Fascinating discoveries have been made in the last 60 years in cancer
research. Yet, these discoveries have not changed the main methods of
standard cancer treatment. Surgery, radiotherapy and chemotherapy were
developed in the first half of the 20th century. At this time nothing was
known about the biology of cancer metastasis and about the role of the
immune system in the fight against cancer. This book is a plea for an
update of cancer treatment by including biology-based treatments, such as
immunotherapy and oncolytic virotherapy. These treatments have a higher
tumor selectivety and lower side effects than radio-or chemotherapy. In
addition they can induce long-lasting effects which are based on cancer-
specific immunological memory. We now know that epigenetic mechanisms
allow tumors to develop therapy-resistant variants. Therefore, efficacy of
future cancer therapy could be improved by targeting cancer-associated
epigenetic mechanisms. The tumor microenvironment represents an
important support system for cancer growth, invasion and metastasis.
Future strategies targeting the tumor microenvironment are considered as
promising. The book addresses all people concerned with cancer
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QUO VADIS CANCER THERAPY ?

Fascinating discoveries of the last 60 years

A plea for more immunotherapy, lower side effects and
higher efficacy

INTRODUCTION

This book is directed at all people concerned with cancer and interested in
its pathogenesis, biology and treatment possibilities. Each mode of treatment
has its history which is being reviewed.

The first Chapter deals with the development of conventional treatments
such as surgery, radiotherapy, chemotherapy and hormone therapy. Each
treatment category is explained and the effects and side effects summarized.

Targeted therapies represent new types of drugs based on molecular
science and rational drug design. To understand their scientific basis,
development and mode of function, Chapter Il describes the many advances
in molecular biology which formed a basic platform for targeted therapies.

Targeted therapies, described in Chapter Ill, are directed towards defined
cancer-associated targets. They can be small molecules inhibiting intra-
cellular enzymes of signal transduction. Or they can be larger molecules like
monoclonal antibodies (mabs) targeting membrane expressed receptors.

Immunotherapy is described in Chapter IV. Progress in immunology and
virology in the second half of the last century has led to new modes of
treatment which are based on biology rather than physics (radiotherapy) or
chemistry (chemotherapy). The first half is devoted to antibodies, which
meanwhile have entered the clinical practice while the second half deals with
T-cell mediated immunity and adoptive cellular immunotherapy.

Chapter V describes milestones of virological research with relevance to
cancer. Its main focus is directed towards oncolytic viruses and virus-modified
anti-cancer vaccines.



Chapter VI describes combinations of biological therapies and standard
therapies. For a cancer patient it is important that the therapy has as low side
effects as possible and should affect overall survival (OS). Biologic therapies
(e.g. vaccination immunotherapy or oncolytic virus therapy) have a mode of
action that is different from cytostatic drugs. Their effects are host mediated
and usually not immediate but delayed. Their side effects are much less
pronounced than those of chemotherapy. The combinations described point
towards low dose applications with reduced side effects.

Physiological regulatory systems are explained in Chapter VIl. Cancer can be
characterized as a disease of dysregulation at many levels, within the cancer
cell itself and outside in its tissue environment. A physiological process such
as wound healing is complex but optimized by nature and goes without side
effects. Graft rejection by the immune system is another example. We will
provide an example that dysregulations associated with cancer, even in late-
stage disease with cachexia, are principally reversible. In this example it is a
specially potent immune response, which can be transferred from an
immunoresistant mouse strain into the tumor-bearing strain. So it is worth
studying further, how to reverse cancer-associated dysregulations.

Chapter VIII discusses a change of paradigm. Rather than focusing on the
tumor cells, one could target therapies on the stromal support network and
the host cells involved with it. One could target for instance host cells helping
extravasation and metastatic niche formation. Or one could target the
invasion front with its invadopodia, invasion enzymes and ECM. Also the
communication between “seed” (disseminated tumor cells) and “soil” (target
organ of metastasis) could be worth targeting.

The final Chapter IX reflects the topic of this book: Quo vadis cancer therapy ?
It will compare immunotherapy with other therapies and then discuss in
general how to reduce side effects and how to improve efficacy.

What this book is not aiming at is to cover all aspects of cancer. The focus is
more on the concepts behind the different modes of treatment and the
search for possible synergistic effects for future improvements. Another
aspect concerns the enormous advancement of knowledge in the sciences of
biology and medicine within the last century. The step-wise elucidation of the
functioning of our body, as witnessed by Nobel Prizes in Physics, Chemistry
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and Physiology or Medicine, is satisfying. So this book also aimes at
transmitting the progress made in human sciences to the general public.

| witnessed and participated in cancer research for nearly 50 years. The most
fascinating discoveries made in this time period will be explained. There are
also auto-biographical aspects which are separated in boxes.

Each Chapter is rounded up by a list of key points and by a list of references.

CHAPTER I. STANDARD THERAPY

Cancer is a disease of cells in a multicellular organism and thus older than
mankind. This knowledge goes back to Rudolf Virchow, who in the 19
century formulated the cellular theory of cancer. Leukemia was for the first
time considered as a disease of white blood, thus the name. Hyperplasia was
defined as a growth based on the increase of cell division while hypertrophia
was defined as a growth due to the increase of cell volume.

In 1910, W B Coley, J Ewing and E Codman in New York treated sarcomas
from bone by a mixture of bacterial toxins. The positive effects observed in
some but not all patients were likely due to stimulation of the immune
system. One of Coleys toxins became much later known as the Tumor
Necrosis Factor alpha (TNF-a). But surgeons and oncologists at the time did
not take much notice of those induced anti-cancer reactions.

A. SURGERY

Operations of cancerous growths were performed at the end of the 19t
century even before it was known that cancer is a disease of abnormal cells
and not of pus. With more experience, surgeons became aware that they
were successful only when the disease was early discovered and localized.
Often they were not successful. From leukemia it was known since about
1900 that there exist different varieties: Those that are chronic and indolent
such as chronic myeloid leukemia (CML) and those that are acute and
aggressive, such as acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML).
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The following description of the development of surgery in the 20" century
is based on two important books. One is written by S Mukherjee (1),
published in 2010 and presents a very personal biography of cancer, entitled
“The Emperor of All Maladies." The other is written by KH Bauer (2), the
founder of the German Cancer Research Center in Heidelberg (Germany). In
1963, he wrote a comprehensive textbook about cancer and the state-of-the-
art of treatment at the time.

i) THE DOGMA OF RADICAL, ULTRA-RADICAL AND SUPRA-RADICAL SURGERY

Decades of surgical cancer treatment in the first half of the 20™" century
passed without a major success. So surgeons became more and more
frustrated. The fight against other diseases such as smallpox, typhus and
tuberculosis had been far more successful. Thus, surgeons gradually increased
the aggressiveness of cancer operations. Already in 1890, WS Halsted from
the Johns-Hopkins University (USA) had introduced the concept of radical
mastectomy to treat breast cancer (3). Without understanding cancer
metastasis as the main reason for the failures of surgical treatment of cancer,
Halsted continued with surgery and increased the size and extent of
operations.

In 1930 radical surgery had become a dogma worldwide and Halsted had
become the Hero of cancer surgery. He had formulated the “centrifugal
I"

theory” which later turned out to be wrong. Gradually “radica
became “super-radical” and finally “ultra-radical”.

mastectomy

ii) DISPROVAL OF THE DOGMA AFTER 90 YEARS

But there were others like G Keynes from London (UK). He doubted the
concept of radical surgery and tested combinations of conventional surgery
with radiotherapy. Also, in the USA, G Crile Jr in the 1950s decided to give up
radical mastectomy. Based on 40 years of clinical experience , Keynes and
Crile had apparently similar positive experiences without radical mastectomy.

It was still a long way to disprove a prevailing dogma. This required new
statistical methods, the concept of statistical power and high numbers of
cases. So, even in 1973 Crile had not been able to disprove Halsteds theory of
radical mastectomy. Nevertheless, he sent an urgent appeal to breast cancer
patients, namely to refuse radical mastectomy.
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The surgeon B Fisher from Pennsylvania (USA) was eventually successful in
disproving the prevailing dogma. It lasted 10 years until he could convince
1765 patients to participate in a clinical study performed at 34 clinical centers
in the USA and Canada. It was a 3-armed study. Arm 1: Radical mastectomy,
arm 2: Conventional mastectomy, arm 3: Lymphnodectomy plus radiation.
The results were published in 1981. There were no differences in the
frequency of recurrencies, metastases and mortality. Group 1 was not better
than the other groups but had to pay with high morbidity. Systemic adjuvant
therapy was proven as good as radical mastectomy (4).

The dogma of radical mastectomy, although wrong, had prevailed for as long
as 90 years, from 1891 to 1981. It has been estimated that about 500 000
women worldwide underwent this procedure. Many of them became
disabeled. Many had no idea that their treatment of cancer could have been
done in a different, less aggressive, way. This incredible story was described
in a book in 2001 (5) and a biography about WS Halsted appeared in 2010 (6).

When Fisher's study results became published (4), radical surgery collapsed
immediately. This was a collapse of a prevailing dogma. The dogma made
people believe that cancer with metastases could be cured by surgery alone.
The medical truth was that a cancer’s ability to invade healthy tissue, to
disseminate via the blood and lymphatic vessels and to grow at distant sites
into metastases destroyed all the efforts of the surgeons. There had been an
ignorance about the basic biology and complexity of systemic metastatic
disease. In addition, there was hardly any research in tumor immunology
studying the complex interactions between a tumor and the host’s immune
system.

In 2008 B Fisher formulated the following summary about cancer surgery:

“ Surgery in the 20" century was dominated by the principles of William S.
Halsted, who contended that the bloodstream was of little significance as a
route of tumor cell dissemination; a tumor was autonomous of its host; and
cancer was a local-regional disease that spread in an orderly fashion based on
mechanical considerations. Halsted believed that both the extent and
nuances of an operation influenced patient outcome and that inadequate
surgical skill was responsible for the failure to cure” (7).
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ili) A NEW ERA OF CANCER SURGERY

A new surgical era arose in 1957, when cancer surgery began to be
influenced by laboratory scientific research and clinical studies. The results
were in contrast to the Halsted principles. Clinical trials supported the thesis
that operable cancer can already be in a state of systemic disease. In this
situation, variations in local-regional therapy were unlikely to substantially
affect survival. Complex tumor-host relationships were shown to affect every
aspect of cancer and, contrary to Halsted's thesis, the bloodstream was found
to be of considerable importance for tumor cell dissemination. Clinical trials
had shown that less radical surgery was justified.

In addition, studies had shown that improved survival can be achieved with
systemic therapy after surgery. Such therapy could reduce both the incidence
of distant disease and the tumor recurrence at the tumor site after minimal
surgery. The use of systemic therapy in patients who had no identifiable
metastatic disease was a drastic departure from previous strategies (7).

In 1962, the German surgeon KH Bauer published in german language a
more than 1 000 page book about the state-of-art of cancer therapy,
including the latest surgical techniques (2). He concluded among others:

a) Cancer therapy consists basically on three methods: operation,
radiotherapy and chemotherapy.

b) Surgical treatment has the strongest impact. It should be performed,
however, only when the disease is localized or maximally regionally
disseminated.

c) Operations of cancer have to be carefully planned and carried out. Because
of the possibility of regional cancer cell dissemination, cancer has to be
operated within a rim of healthy surrounding tissue.

d) Advances in cancer surgery are made possible through advances in general
surgery: Electrosurgery, modern procedures of anesthesia, chemoprophylaxis
of wound infections, etc.

e) Operations of recurrencies are more difficult than those of primaries. Also
the rates of cures are far lower.
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f) Operations of metastases make sense only when these are solitary
metastases or metastases restricted in space to lung- or liver-lobuli.

g) Operations in a palliative situation are performed only to prevent direct
danger, such as ileus, suffocatio, blindness due to intracranial liquor pressure,
etc. They may also serve to reduce cancer-associated pain.

h) A special situation exists with regard to operative endocrinotherapy. This
relates to orchi-, ovary- or adrenalectomy in cases of hormone-dependent
mammary- or prostate carcinomas.

i) Operative cancer therapy can, in selected cases, well be combined with
radio- and chemotherapy.

This summary, written by the Founder and Director of the German Cancer
Research Center in Heidelberg 55 years ago is an attempt of an objective
analysis of the situation at the time.

In the meantime, the surgical management of breast cancer has changed
over the past decades (8). For prostate cancer, the predictive value of stage-,
grade- and prostate-specific antigen for recurrence after radical
prostatectomy was proven to be dependent on the surgeon’s experience (9).

An overview of surgery in Ontario (Canada) revealed that lung cancer
incidence and surgical care vary significantly by health region, income level,
and community size (10). These are just examples of the many variables that
might affect the outcome of cancer surgery.

Of importance are advances in surgical techniques. In addition to traditional
open surgery there exists the laparoscopic surgery. Robot-assisted surgery is
claimed to be one of the biggest breakthroughs in surgery since the
introduction of anaesthesia (11). It is said to represent the most significant
advancement in minimally invasive surgery of this decade. Natural orifice
transluminal endoscopic surgery (NOTES) is another new concept that
attempts to reduce the impact of surgery on the patient (12). In future one
might imagine even regenerative surgery by combining surgery with cell-,
biomaterial-, and molecular-based approaches of tissue engineering (13).

Tables 1 and 2 list milestones in the development of standard therapies for
cancer, in particular concerning surgery and radiotherapy.
15



B. RADIOTHERAPY

Radiotherapy (RT) of cancer tries to make use of electromagnetic rays which
were shown to be inductors of mutations in cell culture. The wave lengths
range from UV to 7y rays. The basis for radiotherapy of cancer rests on the
observation that cancer cells in cell culture have a higher sensitivity towards
toxic effects of radiation than normal cells.

Pioneers of RT were, among others, Wilhelm Conrad Rontgen, the discoverer
of X-rays (14) and Marie and Pierre Curie, the discoverers of radioactive decay
(15).

i) NATURE

Irradiation is most often performed by Rontgen-or Gamma (X) rays (high
energy photons) and by Electron-rays (Beta-rays). Réntgenrays can be very
weak (10 kiloelectronvolt (keV)), medium (50-150 keV) or strong (150 - >250
keV). They have the advantage of easy technical production as well as good
control and dosage. Alpha-, Beta- and Gamma (x) rays are ionizing rays from
radioactive decay. In a broader sense, Gamma (x) rays represent
electromagnetic rays with high quantum energy (> 200 keV).

Proton beam therapy is a new modality over conventional gamma
radiotherapy because of its dose deposition advantage.

ii) MECHANISMS OF EFFECTS

The main goal of RT is to deprive tumor cells of their reproductive potential.
The primary effect of radiation consists of ionization. The details of the
ionization induced molecular changes in a living cancer tissue in situ are not
yet entirely resolved. Apoptosis and mitotic catastrophe are the two major
cell deaths induced by radiation. In addition, in the last few years it was
shown that inhibition of proliferative capacity of tumor cells following
irradiation, can occur, especially with solid tumors, by permanent cell cycle
arrest which is called senescence.

In an in vitro assay with human lung carcinoma cells, proton beam (3MeV)
was two times more cytotoxic than vy radiation and induced higher and longer
cell cycle arrest. At equitoxic doses, the proton-irradiated cells had reduced
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cell adhesion and migration ability as compared to ‘y-irradiated cells. It was
also more effective in reducing a population of cancer stem cell-like cells (16).

Direct effects of ionizing irradiation on cancer cells include DNA and
chromosomal damage (17), mitotic catastrophe (18), senescence and
apoptosis induction (19-21). P53 plays an important role in determining
sensitivity to radiotherapy (22,23).

Besides the direct effects of ionizing irradiation on cancer cells, indirect
effects exist also. These are mediated in large part by the immune system.
Immunogenic forms of tumor cell death, induced by X-rays, include danger
signals like membrane expression of heat shock protein 70 (HSP70) or release
of adenosine triphosphate (ATP) and high mobility group box 1 protein
(HMGB1) (24).

iii) CLINICAL APPLICATION

Rontgentherapy was developed by G Perthes, a surgeon from Tiibingen
(Germany) who introduced filters to avoid skin damaging rays as a
prerequisite for deep tissue effects. Rontgenray effects depend on the dosis,
the volume of the target tissue and the time of exposure. The wavelength
does not play a role, only the energy dose.

It would go beyond the scope of this review to describe all the technical
developments of radiotherapy in detail. It should suffice to state that - similar
to surgery — also in radiotherapy there was a development away from rigid
schematism, radicalism and ultraradicalism.

iv) CONCEPTS OF RADIOTHERAPY

Table 3 summarizes different concepts of radiotherapy. Teletherapy consists
of methods to expose a body from outside to irradiation, while
brachytherapy consists of methods to implant the radiation source into the
body. Particeltherapy with protons, neutrons or heavy ions allows to achieve
better deep tissue effects. Radio-immunotherapy with radionuclide-labeled
anti-tumor antibodies improves the specificity and is part of targeted
therapies which will be discussed further below.

CA Perez, LW Brady and EC Halperin have described the principles and

practice of radiation oncology (25).
17



a) Effects

RT seems to be particularly suited in cases of metastases in order to improve
quality of life. Between 1930-1940, cancer patients with metastases in bone,
lung, skin and at other sites were treated by RT. It was concluded in 1940
that irradiation can be recommended for the following indications: lung
metastases (seminom, struma maligna), hilus- and pleurametastases (primary
tumors of mouth, pharynx and oesophagus), bone metastases (primary
tumors of struma, mamma, testicles and ovaries) and finally skin metastases
in absence of distant metastases. In contrast, irradiation of benign bone
tumors (fibroma, myxoma, chondroma, exostoses, osteomes, osteoblastoms)
was not recommended because they do not seem to respond.

Today, RT is used in the treatment of over 50% of cancer patients. It
provides an organ-sparing approach for many patients with early-stage
cancer. It can improve overall survival alone or in combination with
chemotherapy and it is effective in symptom palliation from metastatic
disease.

RT seems to match well with surgery. Pre- and post-operative radiation are
today in many situations standard of treatment. RT can be applied in an
adjuvant situation in combination with RO surgical resection. It can also be
applied as additive in combination with R1/2 resection or in a palliative
situation.

With regard to combinations of RT with surgery, Schmieden described in
1934 three main groups: 1. Carcinoma of skin, face, head and lips where RT
is superior to surgery, 2. Carcinoma of lung, oesophagus, stomach, intestine,
liver, kidney, pancreas, bladder and rectum where surgery is superior to RT
and 3. Carcinomas of mamma, larynx, jaw and tongue, as well as carcinomas
of glands including genitalia, which require a combination of treatment by
surgery and radiotherapy.

Current advances and future directions of cancer RT have recently been
summarized (26,27). 2011 has been designated the year of RT in the UK,
celebrating a century of advances since Marie Curie won her second Nobel
Prize for her research into radium.
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In spite of all the efforts for improvements, it remains a fact that RT in vivo
lacks the evidence for tumor specificity. Side effects are therefore warranted.

b) Side effects

One distinguishes as damage from irradiation early and late effects. To the
early effects belongs the acute irradiation syndrome which has been
observed after atom bomb explosions in Hiroshima and Nagasaki. There are
symptoms in the acute stage of the vegetative nerve system, of the
hematopoetic system, of stomach and intestine and of germ glands.

The late effects include gene effects, damage to the hematopoietic system
and to the immune system, increase of damages in embryos and late tumor
induction.

With regard to radiotherapy of cancer, the damage to skin is the most

obvious. Early skin damage includes dermatitis, exfoliative bullosa and
alopecia, while late skin damage includes induration, dryness, changes in
pigment, teleangiectasia, fibrous changes of subcutaneous tissue and
sklerotization of vessels. Lungs may become affected by radiation fibrosis, the
small intestine by atrophy of lymphatic tissue and bones by osteoporosis and
spontaneous fractures. Germ glands may show reduced germ cell
differentiation, gland atrophy and sterility. Gravidy may be affected by aborts
and radiation-induced abnormalities. In humans, the “fetal period” is one of
particular sensitivity. In this period, radiation can lead to induction of mental
retardation, especially if the exposure occurs between 8-15 weeks of
gestation.

Cranial irradiation that is widely used for treatment of brain tumors may
induce death in human neural stem cells (NSC) and further cause substantial
cognitive deficits such as impaired learning and memory. Direct gamma-
irradiation of human neuroblastoma cells in culture using clinical doses (2-5
Gy) resulted in low levels of apoptosis in cancer cells. Unexpectedly, this was
accompanied by induction of TRAIL/TRAIL-R2 and strong bystander responses
in non-targeted NSC (28). Thus, intercellular communication between brain
tumor cells and bystander stem cells could be involved in the amplification of
cancer pathology in the brain.
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Long-term risks of RT or CT for development of cardiovascular disease (CVD)
or of congestive heart failure (CHF) were evaluated in a large, population-
based cohort comprising 70,230 surgically treated stage | to Ill breast cancer
patients. Radiation therapy regimens used in breast cancer treatment
between 1989 and 2005 increased the risk of CVD, and anthracycline-based
CT regimens increased the risk of CHF (29).

Another late damage is the Rontgenulcus which can change into a
Roéntgencarcinoma.

iii) CONCLUSIONS RELATING TO SURGERY AND RADIOTHERAPY

The history of surgery has been summarized by HA Ellis (30) and the history
of the radiological sciences by RA Gagliardi and JF Wilson (31).

To conclude the chapter on surgery and RT, it may be worthwile to take
breast cancer treatment as an example and to mention the various
improvements achieved over time:

1880 Halsted's mastectomy

1980 Breast-conserving surgery with equivalent survival but better esthetic
outcomes

1980 Chemotherapy established for early breast cancer

1990: Combinations of irradiation technology with imaging and computer
technologies introduced to direct radiation to more precisely defined target
volumes.

1990 External whole breast irradiation introduced with conservative surgery
(reduction of recurrencies)

1990 Sentinel node biopsy avoiding axillary dissection (if the sentinel node
was disease-free)

2000 3-week regimens equivalent to 6-week regimens thus easing pressure
on patients and radiation centers
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As stated by S Zurrida and U Veronesi (32), irradiation systems are evolving
rapidly but are being implemented without data on long-term morbidity or
efficacy, while costs rise steeply.

Radiowaves and modern Magnet Technology have revolutionized modern
tissue imaging, as exemplified by Réntgenimages, Computer Tomographies
and Magnet Resonance Tomography (MRT). Nobelprizes were given for these
three innovations in medicine in 1901, 1979 and 2003. Nowadays,
Réntgenimages are transformed into projection radiographies (PR), which can
be dealt with in a computer. This technology is being used to detect not only
tumors but also tuberculosis or pneumonia.

C. CHEMOTHERAPY
i) PIONEERING WORK FROM SIDNEY FARBER

Historically, the introduction of CT into standard treatment of cancer has a
lot to do with the pioneer Sidney Farber. He was born 1903 in Buffalo (NY,
USA), one year after Virchows death. Farber experienced the development
and success of new antibiotics in the fight against infectious bacterial
diseases during and after the second world war. In 1942 the company Merck
delivered for the first time Penicillin. New antibiotics became available in
1947 (chloramphenicol), 1948 (tetracyclin) and 1949 (streptomycin). In
addition, after the war the medical and state institutions improved their
standards of hygiene. All this led to a dramatic decrease of infectious diseases
such as typhoid or tuberculosis (1).

Cancer treatment, in contrast, saw no progress since decades. Aggressive
surgery was unable to deal with cancer, once this had become a systemic
disease. Farber studied medicine at the universities of Buffalo (USA),
Heidelberg (Germany) and Freiburg (Germany) and finally at Harvard (USA).
In 1947 Farber had become a researcher on cancer where he studied
leukemia and leukemic cells in culture. He became aware that folic acid or
folate is a vitamin-like substance which is essential for building up DNA in a
cell. He saw no proliferation of his leukemic cells in culture in the absence of
folate. So he had the idea to develop antagonists to folate. The first antifolate
was sent from the Lederle Laboratories in NY to Farber in 1947. In the same
year Farber discovered the cytostatic activity of aminopterin, a folic acid
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derivative. Although Farber saw remissions of ALL, these were of only short
duration. His published results were met with skepticism and critics by the
oncological establishment (1).

In 1948 Farber established in Boston the Children’s Cancer Research
Foundation. 1974, one year after Farbers death, his Institute was re-named in
his honor into Sidney Farber Cancer Institute and 1983 into Dana-Faber
Cancer Institute. Farber is considered the founder of modern pathology of
children’s diseases (1).

ii) ANEW DOGMA ARISING: AGGRESSIVE CHEMOTHERAPY

In the late 1970s cisplatin became the latest trend in cancer pharmacology.
For instance, patients with cancer of the testis were treated by a combination
of bleomycin, vinblastine and cisplatin, abbreviated BVP. The yellow fluid was
infused into patients by infusion tubes. The heavy side effects (vomiting 12x
per day; antiemetica did not exist yet) were considered necessary and had to
be tolerated. A new dogma prevailed, namely that of aggressive CT (1).

The National Cancer Institute (NCI) became a fabric of new cytostatic toxins.
More than 100 000 molecules were tested per year, while the basic biology of
cancer and its metastases was still in the dark. In the middle of the 1970s, a
first success was achieved by CT treatment of Burkitt's lymphoma. It was a
high dosed combination therapy of 7 cytostatics. One substance was a
molecular derivative of nitrogen mustard, a toxin of the great war.

There was a financial profit for the NCI. Diverse medication mixtures and
study plans were generated: ABVD, BEP, C-MOPP, ChlaVIP, CHOP, ACT ... Until
1979 the NCI had constructed a network of 20 cancer centers, which they had
selected to be involved in executing all those new studies. Clinical boards
which were involved in the approval and in the coordination of those huge
studies with human subjects were advised to accelerate the process of
approval. It was an experimental set-up of gigantic dimension, not with
animal tumors first, but with human individuals. Trial and error was the
device, most often error prevailed. The patterns were repeated with many
different types of cancer (1).

Table 6 lists some of the cytostatic drugs developed over time. They can be
grouped according to their type as alkylating agents, alcaloids, antibiotics or
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antimetabolites. Many of these still belong to the armentarium of present-
day CT. The list also gives examples of such cytostatics and of their cellular
target. That a cellular target can be identified distinguishes CT from RT. Often
the target has to do with cellular DNA or RNA and their metabolism.
Antimetabolites target purin or pyrimidine metabolic enzymes. Alcaloids
target the cytoskeleton (B-tubulin) and mitosis.

iii) EVALUATION OF THERAPY EFFECTS

Objective criteria for evaluation of therapy effects (Table 4) have been
defined by the World Health Organization (WHO). Apart from the already
mentioned “tumor response” (extent of tumor remission), these include the
determination of remission time, of survival and of toxicity. Subjective
criteria can be Quality of Life (QoL), relief of tumor-associated pain and
general state of health.

So far missing is the determination of Stable Disease (SD) as response
parameter of a therapy and the evaluation of the immune system. The
determination of soluble tumor-associated markers from serum samples may
serve as surrogate marker for follow up and early therapy evaluation.

iv) THERAPEUTIC EFFECTS

CT became established in the 1970s as a curative treatment for adults in
advanced Hodgkin's disease (33,34), non-Hodgkin's lymphoma (35,36),
teratoma of testis (37) and as adjuvant treatment for early breast cancer (38).
Osteosarcoma is another type of cancer that responds relatively well to CT. It
can be applied pre-operatively, post-operatively or in combination.

High dose CT was applied to adult ALL (39) and in combination with
consolidation for AML (40). Improved survival duration was reported for
combination CT induction for Multiple Myeloma (41).

Unfortunately, CT can not be considered as a curative treatment procedure
for the most common cancers, namely carcinomas. If anything, there may be
effects prolonging somewhat OS. In case of metastatic lung cancer, the
application of combination CTs improved OS by 2-4 months, in case of
colorectal carcinoma by about 6 months. In case of metastasized breast
cancer, studies after 1995 reported an improvement of median survival by 3-
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9 months. Often CT is given mainly because of some palliative effects. An OS
benefit of less than 5% has been achieved in the adjuvant treatment of
breast, colon, and head and neck cancers.

Despite the use of new and expensive single and combination drugs to
improve response rates and other agents to allow for dose escalation, there
has been little impact from the use of newer regimens. For non-Hodgkin's
lymphoma and ovarian cancer, for instance, cyclophosphamide, adriamycin,
vincristine, prednisolone (CHOP) and platinum are still the “gold standard”
treatment.

In 2004, a literature search for randomized clinical trials reporting a 5-year
survival benefit attributable solely to cytotoxic CT was performed in adult
malignancies. It included 154 971 cancer patients from USA and 72 903 cancer
patients from Australia. The overall contribution of CT was estimated to be
only 2.3% in Australia and 2.1% in the USA (42).

Overall, only 13 out of 22 malignancies evaluated showed any improvement
in 5-year survival. The improvement was greater than 10% in only three of
those 13 malignancies. The five most “chemo-sensitive” cancers, namely
testis, Hodgkin's disease and non-Hodgkin's lymphoma, cervix and ovary,
accounted for 8.4% of the total cancer incidence in Australia in 1998. In this
selected group, the improvement of 5-year survival rate due solely to CT was
only 14% (42).

iv) SIDE EFFECTS

The summary of the side effects of CT is much longer than that of the
therapeutic effects. Tables 7 and 8 list immediate signs of toxicity and Table
9 signs of chronic toxicity. The data are based on the book “Therapiekonzepte
Onkologie” (43). The Tables might serve as a guide line for the educated
cancer patient.

Table 7 quantifies toxicity according to the WHO classification (grade 0 - 4):
1. From bone marrow and blood are given the values for hemoglobin (Hb)
and the numbers of cells (leucocytes, granulocytes, thrombocytes) in the
different categories. 2. Toxicity levels in the gastro-intestinal (Gl) tract are
characterized by the ratio of two liver enzymes (GOT and GPT) and by the

24



level of bilirubin. 3. Toxicity to the kidney can be followed by increase in urea,
creatinine and proteinuria. 4. Fever is another sign caused by CT.

Table 8 lists other signs of toxicity of approved cytostatic drugs. This time
only grade 3 and 4 are given. It is appalling to read and therefore | apologize
to the reader. How could drugs have become approved with such side effects
and how is it possible that they are still in use ? All organs of the body are
affected, including such essential ones as heart, lung and brain! Even if it
were only a minority of patients which might be affected that severely, it
would be those too much.

In addition, there are chronic (long-term) effects of CT, which are listed in
Table 9. They include development of drug resistance, carcinogenicity and
infertility. The type of drugs are given as well as the mechanisms of drug
resistance which can develop by time. Infertility and carcinogenicity were
already mentioned also as possible side effects of exposure to radiation.

v) CONCLUSIONS OVER TIME ABOUT CHEMOTHERAPY BY EXPERTS

1963: KH Bauer made the following comments about the state-of-art of CT
(translated from german) : “Never were the hopes of great progress in
fighting cancer so high as at the beginnings of CT. Never was the
disappointment larger. Nevertheless, - in spite of less than 1 promille of cures
-, one should not underestimate the value of the symptomatics, the palliative
and the basics.” And somewhat later he states: “ Carcinomas are the type of
tumors which respond only poorly to CT. The proliferation rate of their tissue
of origin, epithelia, is low. That of carcinoma is also low. So it is possible that
normal tissues with physiologically high proliferation rate will be damaged
earlier and stronger than the carcinomas themselves. A patient should think
twice whether to treat his carcinoma and metastases with cytostatic drugs.
The harm may be bigger than the benefit. “

He explains the disaster and disappointment as follows:

1. It was wrong to conclude from the success of CT in the fight of bacterial
infections by analogy a similar success of CT with cancer,

2. It was wrong to assume that a temporary effect with one type of cancer
will translate into similar effects with other cancers,
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3. There was a high discrepancy between the experimental efforts ( > 100
000 substances tested, hecatombs of animals sacrified and > 1 000
publications ) and the meager results from the clinic.

The 1980s: Between 1984 and 1985, at the peak of aggressive CT there
appeared more than 6 000 articles in medical journals about CT treatment of
cancer. Not one reported about a new strategy that led to cure of an
advanced solid tumor by combination CT. As a result, one could observe an
alienation between patients and doctors. When the medical oncologists, who
often were arrogant because of their power, told the patients that the side
effects of CT were tolerable they only meant that CT would not directly
endanger their life (1).

1990: In Germany it was Prof U Abel, an epidemiologist and biometrician at
the Tumorzentrum Heidelberg/Mannheim and at the DKFZ, who in 1990
criticized the excessive use of CT in carcinoma patients. Instead of discussing
the evidence against this practice, the Heads of the two Institutions
(Tumorzentrum and DKFZ) published a statement emphasizing that Dr Abels
conclusions represented his private opinion which was not shared by the
Heads of these Institutions. This dogmatic position was not untypical for the
Directorship of DKFZ, an Institution which should always be commited to
evidence-based medicine.

2000: About ten years later, another german epidemiologist, Prof D Hélzel
(Munich), statet that in the last 20 years there had been no progress in the
treatment of the often metastasized carcinomas of breast, lung, prostate,
colon and rectum. This was based on the data from the Munich cancer
registry. 5 years after diagnosis of metastases only 5% (lung carcinoma) up to
20% (breast carcinoma) of the patients had survived and this figure had not
changed since the 1980s.

D. HORMONE THERAPY

Hormone therapies (HT) slow or stop the growth of hormone-sensitive
tumors. These require certain hormones to grow. They act by preventing the
body from producing the hormones or by interfering with the action of the
hormones. Hormone therapies have been approved for breast and prostate

cancer.
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i) THE PIONEERING WORK OF CHARLES BRENTON HUGGINS

Breast and prostate are hormone-dependent organs. Carcinoma derived
from these organs often go through a phase in which their growth is
hormone-dependent. The Canadian surgeon CB Huggins performed in the
1940s and 1950s classical experiments about the physiology of the prostate in
dogs. He demonstrated that the secretion of testosterone from the prostate
could be ceased either by orchiectomy or by the application of the female
hormone estrogen. Huggins and colleagues also showed that dogs with
tumors of the prostate could be successfully treated by deprivation of
androgens (44). In 1966 he received for his discovery of hormone treatment
of prostate cancer the Nobel Prize for Physiology or Medicine.

The situation with metastatic breast cancer seems to be similar to the
situation with prostate carcinoma. It has been known since a long time that
the removal of the ovaries had a growth inhibitory effect on breast cancer. In
1939 A Loeser and H Ulrich introduced the treatment of breast cancer with
the male hormone testosterone (2).

ii) CONCLUSION ABOUT HORMONE THERAPY BY AN EXPERT

KH Bauer summarized the situation of anti-hormonal therapy in 1963 as
follows: “ There is no doubt that the combined operative (orchi- or
ovariectomy) plus hormone therapy of cancers from hormone-dependent
organs is the greatest progress since the introduction of radiotherapy. The
development proceeded in 4 steps:

1. A change in the hormonal status by orchi- or ovarectomy can have a long
lasting growth inhibiting effect on cancers of prostate or breast, respectively.

2. This effect can be further enhanced by the application of hormones from
the opposite sex. Since these hormones are endogenous physiological
substances, their use for cancer therapy could be considered as an ideal
chemotherapy of cancer.

3. Derivatives produced from such hormones by biochemists in laboratories
led to products with increased effects and decreased side effects.

4. This pharmacotherapy of certain cancers also led to the production of
other hormone preparations, such as cortisone, hydrocortisone etc., which
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had effects on cancers from hormone-independent organs or tissues. Other
preparations, such as prednisone and prednisonol, had anti-inflammatory
functions and could have positive effects against cancer-associated changes in
general metabolism, appetite, body weight etc. In this way developed a
general pharmacotherapy of cancer (2).”

Hormonal manipulations have long been applied for the treatment of
advanced and early-stage breast, prostate, and thyroid cancers. Table 10 lists
the main types of present-day HT. It consists of surgery, competitive HT,
inhibitory HT and of ablative drug therapy.

ili) TAMOXIFEN

Tamoxifen, a selective Estrogen Receptor (ER) modulator, was introduced
into the treatment of breast cancer by VC Jordan in the 1970s (45,46). The
drug and its active metabolites bind to ER and thereby compete with
endogenous estradiol (example of inhibitory HT). It was approved for
adjuvant therapy and for treatment of metastasized ER positive breast
cancer. The recent randomized trial ATLAS revealed that continuing
tamoxifen treatment to 10 years versus stopping at 5 years produces a
further reduction in recurrence and mortality (47).

HT in breast cancer with inhibitors of aromatase or with analogs that inhibit

Gonadotrophine Releasing Hormone (GnRH) increases the risk of
osteoporosis. Biphosphonates and other bone agents can be given to
counteract osteoporosis. In women with clinically evident breast cancer with
bone metastases, bisphosphonates (oral and i.v.) and desonumab (s.c.)
reduced the risk of developing skeletal-related events (SREs), as well as
delaying the time to SREs (48,49).

Side effects of HT are, among others, changes in endometrium (polyps,
neoplasia, hyperplasia) because tamoxifen has not only antagonistic but also
agonistic effects onto the ER. The relative risk to develop endometrium
carcinoma in women treated with tamoxifen is increased by a factor 2-4.

28



E. SOME AGENTS OF STANDARD THERAPY AND ENVIRONMENT ARE
HUMAN CARCINOGENS

Side effects of Standard Therapies can be due not only to toxicity. They can
include carcinogenic effects. The International Agency for Research on Cancer
(IARC) has produced a list of agents that are known as human carcinogens.
Examples are listed in Table 11. They include physical, chemical and biological
agents.

1. Physical agents: Exposure to ionizing radiation of various forms has been
shown to cause multiple forms of cancer. Additionally, solar radiation, in
particular UV radiation, has sufficient energy to cause photochemical damage
leading to skin cancer formation. The incidence of skin cancers, such as
melanoma, basal cell carcinoma and squamous cell carcinoma has risen
dramatically in recent years. UV radiation of 100 — 400 nm range appears to
be causative. Targets of solar radiation-induced mutations include p53, p16,
and PTCH.

2. Chemical agents: Most carcinogens are categorized as chemical
carcinogens. They include organic and inorganic chemicals. Some
chemotherapeutic agents are nitrosamines and heterocyclic amines.
Following metabolic activation, N-nitrosamines can react with DNA to initiate
carcinogenesis.

3. Biological agents. Hormones like estrogen and tamoxifen can be considered
as carcinogens in hormone-dependent tissues. Other biological carcinogens
can be viruses such as Epstein-Barr virus, Hepatitis B and C virus, Human
Papillomavirus and Human T-cell lymphotropic virus. Helicobacter pylori is an
example of a bacterium which can produce carcinogenic effects leading to
stomach cancer.

F. LESS MAY BE MORE

There is at present a discussion going on at cancer conferences whether
cancer treatment has to be so aggressive. There are still physicians who
believe in many operations, high dose radiation and high dose CT. But there
are more and more others who doubt such radical concepts and try to reduce
the aggressiveness.
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For instance, in early-stage breast cancer neo-adjuvant CT, if successful,
could make operations superfluous. Also, increasing the precision in adjuvant
therapy could reduce the percentage of patients that need to be treated. The
70-gene signature test (MammaPrint) has been shown to improve prediction
of clinical outcome in women with early-stage breast cancer. A randomized,
phase 3 study enrolled 6693 women with early-stage breast cancer and
determined their genomic risk and their clinical risk. Women with high
clinical risk and low genomic risk of recurrence based on Mammaprint
received no CT. The study revealed that their 5-year rate of survival without
distant metastasis was only 1,5 percentage points lower than the rate with
CT. It was concluded that approximately 46% of women with breast cancer
who are at high clinical risk might not require CT (50).

Key points:

1. In the first half of the 19" century dogma rather than science
dominated cancer therapy. Examples are radical, super-radical and

ultra-radical and aggressive chemotherapy.

2. The introduction of radiotherapy and its combination with surgery was

an important step forward.

3. The introduction of chemotherapy as an adjuvant treatment modality
to surgery, however, has not fulfilled the original hopes. In spite of the
long list of negative side effects, chemotherapy is still part of standard

therapy, even in carcinomas where its effectivity is disputable.

4. Hormone therapy of cancers from hormone-dependent organs can be

considered as a significant progress in cancer treatment.
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Table1 Main steps in the development of cancer surgery

1800-1900 Increases in aggressiveness of cancer operations

1890 WS Halsted (USA) introduces the concept of radical mastectomy

1930 Radical surgery becomes a dogma worldwide and causes high disability
and morbidity over a time period of about 50 years

1924 G Keynes (UK) tests combinations of less aggressive surgery with
radiation

1962 KH Bauer (Germany) publishes a more than 1000 page book about the
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state-of-the art of cancer therapy, including the latest surgical
techniques

1981 B Fisher (USA) reports results from a study demonstrating no benefit
of radical mastectomy in comparison with simple mastectomy or to

tumor resection plus radiation

Table2 Milestones in the development of radiotherapy

1895 WC Rontgen (Germany) discovers the Rontgen (X, y) rays (high energy
photons)

1898 M and P Curie (France)* discover radioactivity (from radium and
polonium)

1903 E Rutherford (UK) distinguishes between o, 8 an yirradiation

1904 G Perthes (Germany) applies Rontgen rays to cancer patients
after introduction of filters

1910 Radiumhemmet Institute is inaugurated in Stockholm, Sweden

1970 Electron rays are being produced by Linear-Accellerators

2009 Particel therapy with neutrons and protons

The Heidelberg lonray Therapycenter (HIT) with C-ions is inaugurated
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* Marie Curie received the Nobel prize twice: 1903 the one for Physics
together with her husband P Curie and 1911 the one for Chemistry.

Table3 Concepts of radiotherapy

Teletherapy: - photons of y rays and electron-rays are used to target tissues in
the skin or just beneath
- energy-rich protons are used to target deeper organs
- IMRT* is introduced for radiation dose modulation
- Tomotherapy is introduced for 3-dimensional tissue targeting
(rotating system similar to CT)
- Radio-chemotherapy: combination of RT with cytostatics,
e.g. 5-FU or cisplatin, and radioprotectors, e.g. amifostin
- Radio-surgery: e.g. of small brain tumors; stereotactic
targeting, gamma-knife, cyber-knife
Particeltherapy: - protons, neutrons, heavy ions (e.g. Cions)
- to achieve better deep tissue effects

- linear energy transfer (LET)

afterloading of iridium-192 (female genital tract application)

Brachytherapy:

seed implantation of iodine-125 (prostate application)
Radio-immunotherapy: - combination of radionuclide with anti-tumor

antibody,

e.g. Ibritumomab-Tiuxetan (anti-CD20 + yttrium isotope)
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* IMRT Intensity-modified radiotherapy

Table 4 Concepts for evaluation of therapy effects

A Objective criteria (WHO)

1. Extent of tumor remission

2. Time of remission (or time to progression)

3. Survival (median, progression-free, metastasis-free, overall)
4. Toxicity

B Subjective criteria

1. Quality of life

2. Relief of tumor-associated pain

3. State of health

C So far missing

1. State of the immune system

2. Response of the immune system (suppression vs stimulation)

3. Stable disease as response parameter
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Table 5 Concepts of standard therapy of solid tumors, in particular

carcinomas, exemplified with breast cancer

Surgery: resection of localized operable stages with curative intent
tumor-. segment- , quadrant- or mastectomy
combined with axilladissection and/or RT and/or CT
Radiotherapy (RT): adjuvant, in combination with RO resection
additive, in combination with R1/2 resection
palliative
Chemotherapy (CT): neo-adjuvant, pre-operative systemic,
adjuvant systemic
Anti-hormone therapy (HT): adjuvant
combination of adjuvant CT and HT

Biphosphonate-Therapy (BT) against osteolytic bone defects

Table 6 Cellular targets of approved cytostatic drugs

Type of drug examples cellular target

Alkylating agents cyclophosphamide, melphalan DNA, proteins
Ifosfamid, busulfan DNA, glutathion
dacarbacine (DTIC) purin nucleosides

Alcaloids vinca-alcaloid tubulin
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Antibiotics

Antimetabolites

epipodohyllotoxin
camptothecin
bleomycin
anthrachinons
actinomycin D

mitomycin C

amethopterin (methotrexate)

6-mercaptopurin, 6-thioguanin

5-fluoruracil (5-FU)

hydoxy-urea

topoisomerase Il
topoisomerase |
DNA
DNA, topoisomerase Il
RNA polymerase
DNA
dihydrofolate acid
reductase (DHFR)
purin biosynthesis
thymidylate
synthetase
ribonucleotide

reductase

Table 7 Toxicity of approved cytostatic drugs according to WHO classification

Grade 0 1 2 3 4
Intensity none mild moderate severe life-threatening
or disabling
1.Bone marrow®
& blood Hb >11,0 9,5-10,9 8,0-9,4 6,5-7,9 <6,5
Leucocytes >4,0 3,0-3,9 2,0-2,9 1,0-1,9 <1,0
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Granulocytes >2,0 1,5-1,9 1,0-1,4 0,5-0,9 <0,5

Thrombocytes >100 75-99 50-74 25-49 <25

2. Gl Tract

Liver GOT/GPT <1,25be 1,25-2,5xN 2,6-5xN 5,1-10xN >10xN
Bilirubin “ “ “ “ “

3. Kidney

Urea <1,25be 1,25-2,5xN 2,6-5xN 5,1-10xN >10xN
Kreatinin “ “ “ “ “
Proteinurie® none <3 g/l 3,1-10 g/ >10g/l ne syn
4. Feverd none <38°C 38-40° C >40°C pr dec

a Hb (g/100 ml); cells (x10°%/1); b N = norm value ; ¢ ne syn = nephrotic syndrome;
chemotherapy (Mit. C) induced hemolytic-uremic syndrome (c-HUS) with letality between
44 and 82% ; d pr dec = fever caused by therapy and not by the tumor, combined with
blood pressure decrease (hypotony);

Table 8 Other signs of toxicity of approved cytostatic drugs according to

WHO classification

Grade 3 4

Stomatitis ulcers peroral nutrition impossible
Diarrhoe intolerable hemorrhagic dehydration
Obstipation subileus llius

Hematuria macrohematuria obstructive uropathy

Lung dyspnoe bed stay obligatory
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Allergy bronchospasms anaphylaxis

Skin ulcerations dermatitis, necrosis

Hair alopecia, reversible alopecia, irreversible
Infections severe severe + hypotonia
Heartfunction dysfunction dysfunction + nonresponsive
Bleading severe circulatory disorder

Neurotoxicity

i) central/consciousness somnolencia >50% coma
ii) peripheral paresthesia paralysis
iii) extrapyramidal symptoms  ataxia > 4 days spasms, coma

Table 9 Chronic toxicity (long-term effects) of approved cytostatic drugs

1. Drug resistance mechanism

Alkylating drugs increase of intracellular glutathion
increased glutathion-S-transferase
increased DNA repair

Vinca-Alkaloids increased extracellular transport

via P-glycoprotein (mdr 1)

Anthracyclins increased expression of P-glycoprotein

increased activity of glutathione-S-transferase
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increased DNA repair

Methotrexat reduced membrane transport

increased concentration of DHFR?
5-FU reduced membrane transport
lack of desoxycytidinkinase

increased activity of deaminases

increased intracellular pool of dCTP

2. Carcinogenicity/ chlorambucil, melphalan, cyclophosphamide

Mutagenicity mustargen, methyl-CCNU, busulfan, razoxan

3. Infertility busulfan, chlorambucil, cisplatin, etoposide

cyclophosphamide, melphalan, procabazin

a = dihydofolate-reductase

Table 10 Hormone therapy (HT)

Surgery: ovarectomy
orchiectomy
adrenalectomy
hypophysectomy

Competitive HT: anti-estrogens

anti-androgens
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anti-gestagens
Inhibitory HT: aromatase inhibitors

Ablative drug therapy: GnRH antagonists

HT = Hormone therapy; GnRH = Gonadotrophine Releasing Hormone

Table 11 Some agents of standard therapy and environment staged by

IARC* as human carcinogens

Chlorambucil Mustard gas
Ciclosporin 2-Naphthylamine
Cyclophosphamide Radioiodines
Estrogen Silica

Etoposide Solar radiation
Melphalan Tamoxifen

Gamma (X)-Irradiation

IARC* International Agency for Research on Cancer
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CHAPTER Il. BIOLOGICAL THERAPIES

Having gone through standard therapies, the question may be allowed:
Where are we now?

A. STATE-OF-THE-ART OF CANCER THERAPY IN 2014

The WHO in its world cancer report 2014, which was presented by the
International Agency for Cancer Research (IARC) in London, gives numbers for
the year 2012. Worlwide there have been 14 million new cases of cancer and
8,2 million cancer patients who have died in that year. With regard to Europe,
there have been 3,4 million new cases and 1.8 million patients who have
died. Of the 1,8 million death cases, lung cancer had the highest rate (20%),
followed by colorectal cancer (12,2 %), breast carcinoma (7,5%) and stomach
cancer (6,1%).

These figures are disappointing and show that standard therapy is far away
from having the disease under control. In the past, after repeated
disappointments, the answers by medical oncologists have often been to
increase the aggressiveness of treatment. This happened in surgery,
radiotherapy and chemotherapy. The tumor was the enemy and the host
organism had to tolerate the side effects. There was hardly any
understanding of the biology of cancer and its metastases nor of the role
which the immune system might play.

B. MOLECULAR BASIS FOR BIOLOGICAL THERAPIES

Hormone therapy is a biological/physiological way of treatment, but it can
be applied only to a minority of cancers. It seems logical to go from therapies
based on physics (RT) and chemistry (CT) to those based on biology. Biological
therapies (BT) are characterized by a higher tumor specificity than RT and CT.
That is why, in principle, such therapies have less side effects.

i) BIOLOGICAL THERAPIES
These therapies include:

a) Targeted therapies (TT): small molecules as signal-transduction inhibitors,
antiangiogenic and vascular-disrupting agents, or as apoptosis modulators

(Chapter Ill),
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b) Immunotherapy with monoclonal antibodies (mabs) (Chapter IV),

c) T-cell mediated immunotherapies targeted to Tumor-associated antigens
(TAAs) (Chapter V),

d) Oncolytic Viruses (Chapter V).

Before describing those therapies, it is important to first explain the
enormous progress that has been made in the last decades in cancer
research. This is true for molecular biology, for the molecular biology of
cancer, for cancer invasion and metastasis and for basic and tumor
immunology. This is a prerequisite for understanding the rationale of
Biological Therapy.

To identify a molecular target in a cancer cell that might be suited for a
Targeted Therapy, it is necessary to identify its genetic basis at the level of a
DNA sequence and its protein basis at the level of the amino-acid sequence.

This Chapter is primarily based on the excellent textbooks from Robert A

Weinberg (The Biology of Cancer) (1) and from John Mendelson (The
Molecular Biology Of Cancer) (2) which appeared in 2007 and 2008,
respectively.

ii) MILESTONES FROM MOLECULAR BIOLOGY

The last more than 60 years have provided a number of revolutionary
technologies in a research area termed molecular biology. Table 12 lists some
of these innovations in the years from 1962 to 2000. It starts with the
discovery of the double helix as basic structure of DNA and ends with the first
complete sequence of the human genome. This is an arbitrary selection of
discoveries from different disciplines such as: gene structure and function,
protein structure and function, cytogenetics and cell biology.

Driving forces for these discoveries were new molecular technologies such
as protein crystallization, DNA hybridization, use of restriction enzymes and
ligases, cell cloning techniques, 2D gel electrophoresis, PCR, etc.
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ili) MOLECULAR BIOLOGY OF CANCER

In the 19™ century it was discovered that all cells of an organism descend
from the fertilized egg. This led to the realization that tumors are not foreign
to the body but represent growth derived from normal multicellular tissues.
Tumors are classified into four major groups according to their origin
(epithelial, mesenchymal, hematopoietic, and neuroectodermal). The most
common human cancers are of epithelial origin — the carcinomas. There are
two categories: squamous cell carcinomas arise from epithelia that form
protective cell layers, while adenocarcinomas arise from secretory epithelia.

a) Carcinogens and tumor viruses

Biochemical and genetic markers revealed that human tumors are
monoclonal, thus descend from one ancestral cell. In 1975, the Ames test
provided support for the epidemiological studies implicating chemical and
physical agents (tobacco, coal dust, X-rays) as causes of cancer. The test
demonstrated that these agents acted as mutagens. Other agents were
discovered which functioned as co-carcinogens or tumor promoters. These
were found to promote tumorigenesis through nongenetic (epigenetic)
mechanisms.

The DNA and RNA tumor viruses, characterized in the 1970s, provided
cancer biologists with another theory of how human tumors could arise. They
could be driven by viruses in addition to the effects of carcinogens and their
mutagenic potential. Attemps during the 1970s to isolate viruses from human
cancer were, however, mostly unsuccessful. Of the 100 and more tumor types
encountered in the oncology clinic, only 2 commonly occurring tumor types in
the Western world - cervical carcinomas and hepatomas (liver carcinomas) —
could clearly be associated with specific viral causative agents.

b) Cellular oncogenes and tumor suppressor genes

The lack of success in identifying tumor viruses in the majority of human
cancers left researchers with one main theory of how most human cancers
might arise: that carcinogens act as mutagens and function by mutating
normal growth-controlling genes into oncogenes.
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Table 13 lists milestones in molecular biology of cancer. It demonstrates that
growth-controlling genes have indeed been discovered:

1. oncogenes which stimulate growth

2. tumor suppressor genes which inhibit growth

c) Control of the cell cycle

To understand the functioning of oncogenes and tumor suppressor genes it
is worth having a look at the cell cycle. The cell cycle is a precisely
programmed series of events that enable a cell to duplicate its contents and
to generate two daughter cells. It is conceptually divided into four individual
phases: G1(Gap 1), S (synthesis), G2(Gap 2) and M (mitosis). Go or quiescence
occurs when cells exit the cell cycle due to the absence of growth-promoting
signals or the presence of pro-differentiation signals. The series of events
from G1 to M are controlled by the machinery that is often termed the cell
cycle clock. It seems to operate similarly in all cell types throughout the body.

One period in the cell cycle is particularly important, the Go/G1 transition
phase. This is the one period in the life of an actively growing cell, in which
the cell is given license to make decisions about its fate. Within the G1 period,
a cell is responsive to mitogenic growth factors and to TGF-B. At a certain
point of G1, called the restriction point (R point), a critical decision is made. In
most mammalian cells studied, the R point occurs several hours before the
G1/S phase transition.

In the following, only a few additional facts will be mentioned. These are
important for understanding the functioning of some products of oncogenes
or suppressorgens. Cyclins and cyclin-dependent kinases (CDKs) constitute
the core components of the cell cycle clock. Post-translational regulation
(activation or inhibition) of CDKs occurs through phosphorylation. The
decision concerning growth versus quiescence at the R point is governed by
the state of phosphorylation of the tumor suppressor gene product
retinoblastoma protein (Rb). D cyclins and cyclin E control the degree to
which phosphorylated Rb (pRb) is phosphorylated. Hypophosphorylated pRb
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blocks passage through the R point, while hyperphosphorylated pRb permits
this passage (1,2).

d) Cellular senescence response

Normal cells that have the ability to proliferate (mitotic cells) can be induced
to undergo cellular senescence by potentially oncogenic insults. These include
DNA damage, dysfunctional telomeres, chromatin perturbations, and the
expression of certain oncogenes. The senescence response requires normal
functioning of the p53 or pRb tumor-suppressor pathways. This response
permanently suppresses cell proliferation, implementing a postmitotic
growth arrest.

Cells with mutant p53 or pRb are deficient in undergoing senescence. When
faced with potentially oncogenic insults, such cells are at greatly increased
risk for malignant transformation.

In cancer cells, a number of mechanisms operate to ensure that cell
proliferation is not constrained by pRb. pRb function can be lost by excessive
mitogenic signals since these lead to elevated levels of D cyclins, which then
initiate pRb inactivation via phosphorylation. pRb can also become changed
by mutation, by binding of a viral oncoprotein (e.g. HPV E7) or by the actions
of cellular oncoproteins (e.g. Myc) (1,2).

e) Programmed cell death

Research on cell death is one of the fastest growing fields in cancer
research. Programmed cell death (PCD) plays essential roles in maintaining
the homeostasis (i.e. a physiological balance) in multicellular organisms.
These ensure that individual tissues maintain their correct size and proper
function. Also, most of the side effects of standard chemotherapy results
from the induction of PCD in normally dividing tissues, such as the intestinal
epithelium and bone marrow.

In the 1970s, three types of cell death pathways could be distinguished by
electron microscopic analyses: apoptosis, autophagy and necrosis. The
initiation of PCD is regulated either by cell-intrinsic or cell-extrinsic apoptotic
pathways. The intrinsic pathway is activated by intracellular stress. This can
be caused by damage to DNA or proteins caused by exposure to irradiation,

49



reactive oxygen species, or chemotherapeutic drugs. Also, hypoxia and virus
infection can cause endoplasmatic reticulum (ER) stress. Extrinsic apoptotic
pathways are triggered by ligands binding to the Fas family of death
receptors. They can also be triggered by toxic proteins such as perforin and
granzyme B released from cytotoxic T lymphocytes (CTL) and natural killer
(NK) cells. Intrinsic and extrinsic apoptotic pathways converge on using highly
specific and conserved aspartate-specific cysteine proteases termed
“caspases”. These are the key executioners of the apoptotic response.

The intrinsic pathway is regulated by mitochondrial outer membrane
permeabilization (MOMP) which results in the release of cytochrome c. The
extrinsic pathway is initiated by the binding of a ligand (FasL) to the Fas
receptor, which thereby is trimerized. This results in the recruitment of “Fas
associated via death domain” (FADD). This in turn recruits and activates the
initiator caspases -8 and -10. These then cleave and activate the effector
caspases -3, -6, and -7 which then direct the destruction of the cell. Caspase
substrates include cytoskeletal proteins, components of the nuclear
membrane, chromatin and DNA (1,2).

In 2002, the Nobel Prize for Physiology or Medicine was granted to S
Brenner, HR Horvitz and JE Sulston for their discoveries concerning genetic
regulation of organ development and PCD. In 2016, the respective Nobel Prize
was awarded to Y Ohsumi for the discovery of mechanisms of autophagy, by
which cells cycle their content. Mutations in autophagy have been linked to
diseases such as cancer and neurological disorders like Parkinson's disease.

C. MILESTONES FROM METASTASIS RESEARCH

Tumors are divided into benign or malignant, depending on their
aggressiveness. Invasion and metastasis of malignant cells is responsible for
most of the failures of standard therapy. Metastases account for the majority
of cancer-associated mortality. There is no cure for metastases, and at least
90% of all people dying from any type of cancer are dying due to cancer
metastases.

In 1975, there were virtually no insights into the molecular alterations
within human cells that lead to the appearance of malignant disease.
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One generation later, we possess such knowledge in abundance. When |
began my research at the German Cancer Research Center (DKFZ) in 1976 as
Head of the Division of Cellular Immunology, | put much effort into
establishing an animal model for the study of cancer metastasis. This could
later be used to study immunotherapy of metastases. There was at that time
hardly any information in the central library of this Institution about cancer
metastasis. Some colleagues even questioned whether such complex
phenomenon could be studied systematically at all.

Tables 14 and 15 list the development of various different concepts about
the biology of cancer metastasis.

The first and most famous is the “Seed and Soil” hypothesis formulated by
the pathologist Stephen Paget as early as 1889 (3). Based on examination of
postmortem data from 753 patients with breast cancer, he noted that the
organ distribution of metastases was nonrandom. He hypothesized that
certain tumor cells, the seed, grew preferentially in the microenvironment of
select organs, the soil. In a complementary hypothesis, James Ewing
proposed in 1928 (4) that the primary factor that determined the patterns of
tumor metastasis was the anatomy of vascular and lymphatic drainage from
the site of the primary tumor (i.e. anatomical/mechanical hypothesis). For
example, the liver is a common site for the hematogenous metastases for
tumors arising in the gastrointestinal tract. This is due to the unique venous
drainage that takes place through the portal venous system. Ewing’s theory
accounts for the migration of prostate cancer cells to the lumbar vertebrae
via Batson's plexus of draining lymph nodes and Paget’s theory helps explain
the organ specificity of prostate cancer metastases to bone.

Another widely accepted theory is the progression or clonal selection model
proposed originally by P Nowell in 1976 (5). According to this theory, only a
small fraction of the tumor cells acquire the metastatic phenotype. This
occurs through a series of somatic mutations as a late event in the course of
the tumor. The hypothesis was supported by experiments from IJ Fidler and
M Kripke in 1977 (6). Using B16 mouse melanoma cells, they demonstrated
that the metastatic capability of tumor cells sampled from pulmonary
metastases was greater than that of cells from the primary tumor. The
existence of cancer of unknown-primary site, however, argues against this
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theory. In such patients, the metastases are present at the onset of clinical
disease. There is no primary tumor with enough size and number of cells to
achieve the required mutational events for the acquisition of the metastatic
phenotype.

In 1980, | published a new hypothesis that contrasted considerably with the
nearly dogmatic theory of my American colleagues of selection of pre-existing
tumor cell variants. Instead, | proposed that signals from the
microenvironment of a target organ with which disseminated tumor cells
make contact can induce a shift in the tumor cell’s phenotype. Such shifts
were proposed to be based on genetic re-programming (7). About 20 years
later, such shifts were indeed described, namely for carcinoma cells. When
these epithelial tumor cells loose contact to their underlying extra-cellular
matrix (ECM) at the basement membrane of blood vessels, they can change
their phenotype into mesenchymal-type cells. This process is called epithelial-
mesenchymal transition (EMT). After travel through the blood and
extravasation, such mesenchymal-type invasive tumor cells, upon contact
with the organ microenvironment, can change their phenotype back again
into an epithelial-like carcinoma. This process is called mesenchymal-
epithelial transition (MET).

In 2002, Jean-Paul Thierry described EMT in detail (8). Interestingly, the
cell-biological EMT program was found to involve transcription factors (TFs)
which are normally used by cells early in embryogenesis and during wound
healing. Signals released by the stromal microenvironment, operating
together with genetic and epigenetic alterations of the cancer cell’s genome,
are often responsible for inducing expression of EMT-inducing TFs in the
cancer cell and thus the EMT.

The invasion-metastasis cascade became eventually distinguishable into
different steps: local invasion, intravasation, transport, extravasation,
formation of micrometastases and organ colonization. In 1984, my Canadian
colleague R Kerbel forwarded another new perspective, namely that not only
genetic but also epigenetic mechanisms may be at work during tumor
progression and metastasis (9). This hypothesis was based on extensive
experiments with mouse tumor lines subjected in vitro to treatment with the
drug 5-aza-cytidine. This drug interferes with DNA methylation and can cause
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de-repression of genes. In accordance with this theory, we had observed at
that time period that immune escape variant cells could be generated in vivo
with a high frequency from ESb lymphoma cells (10). Such tumor variants had
lost expression of a specific tumor-associated antigen (TAA) that had been
recognizable on the parental line by specific cytotoxic T lymphocytes (CTL).
Upon in vitro treatment with 5-aza-cytidine, such immune escape variants
were found to re-express the TAA (11). This suggested that epigenetic
mechanisms may also be at work during tumor immune escape mechanisms,
an important step in tumor progression.

Carcinogenesis has been described to occur in three basis steps: Initiation,
promotion and progression. Promoting agents act via epigenetic mechanisms
to alter gene expression. Typical skin tumor-promoting agents include
phorbol esters like TPA, the phosphatase inhibitor okadaic acid, and the
organic peroxide, benzoyl peroxide. Crucial to cancer progression of solid
tumors are the processes of invasion and metastasis (1,2). These now also
seemed to be influenced by epigenetic mechanisms.

This conclusion was later (2011) further supported by the studies of Fang et
al (12). Groups of breast tumors were characterized by the presence or
absence of coordinate hypermethylation at a large number of genes. This led
to the identification of a breast CpG island methylator phenotype (B-CIMP).
Presence or absence of B-CIMP loci was associated with low or high
metastatic potential.

The sequence of steps in the metastatic cascade is completed only
infrequently. The least efficient step appears to be organ colonization. The
pathologist L Weiss formulated in 1990 the concept of metastatic inefficiency
(13), based on quantitative calculations .

A role of chemokines in the process of cancer metastasis was proposed by
PM Murphy at the beginning of the new millennium (14). ) Wang et al in 2006
(15) described the pivotal role of the CXCL12 (SDF-1)/CXCR4 axis in bone
metastasis as an important example.

In 2003 and 2011 Ul Fidler revisited the seed and soil hypothesis of S Paget.
At these times he did not mention anymore the selection of pre-existing
tumor cell variants but rather emphasized the role of tumor-stroma
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interactions in metastasis to different organs. In this context, he examined
clinically relevant examples, namely bone metastases, lung metastases, liver
metastases and brain metastases (16,17).

2003 is a year with many new concepts relevant for the biology of cancer
metastasis. For instance, CA Klein (18) addressed the problem of tumor
dormancy in breast cancer and G Dontu et al (19) the importance of stem cells
for the malignant switch. It is also the year in which molecular genetic aspects
in cancer cells were demonstrated to be important. P Steeg (20) proposed
that metastatic suppressor genes alter signal transduction of cancer cells and
W and C Birchmeier (21) described the importance of the gene Met for cancer
cell motility. Cell motility is found to be regulated by a series of small G
proteins of the Rho family that are activated by cytoplasmic signal-
transducing pathways and control the assembly of the actin cytoskeleton.

A genetic predisposition model was proposed in 2003 by Massagué’s group:
Y Kang et al. (22) proposed a multigenic genetic predisposition model
mediating breast cancer metastasis to bone. Breast cancer cells that
overexpress CXCR4, PTHLH, IL11, MMP1 and OPN genes appeared to
preferentially metastasize to bone. Later it was shown that breast cancer cells
that overexpress COX, EREG and ANGPTL4 exhibit a tropism for lung (23) and
breast cancer cells overexpressing ST6GALNAC5, COX2, HBEGF and ANGPTL4
were found to have a particular affinity for colonizing the central nervous
sytem (24). Presumably, the gene patterns specific to each of these cell
subpopulations may have been obtained through a series of somatic changes.

Genes of relevance for cancer metastasis could become introduced into the
cell from outside sources. One such mechanism is cell fusion. JM Pawelek
proposed in 2005 that tumor- host cell fusion could be a means by which
myeloid traits are being transferred into cancer cells (25). This corroborates
our findings from 1984, more than 20 years earlier (26).

A new concept developed in the years 2005 to 2017: That of the pre-
metastatic and metastatic niche (27-30) . Associated with this is the
understanding that metastasis is not random and chaotic but rather looks like
an organized process involving cells, exosomes, micro-RNA (miRNA) and
distinct proteins from the host in a coordinated fashion. This is new and leads
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to a better understanding of the biology of metastasis. Further details will be
presented in Chapters Vil and VIil.

Of interest is also another new concept that was developed 2013 by KJ
Pienta, RS Taichman and colleagues (31). This concept views and compares
cancer metastasis with the diaspora context of ecology. Interesting
therapeutic paradigms are based on network disruption. One application
would be the use of traps to treat cancer outside their seed and soil system.
For glioma cells a reservoir of neurotropic chemokines could be used to
attract cancer cells to an area where they could be radiated. For prostate
cancer cells, a reservoir of SDF-1 could be temporarily inserted intravenously
that attracts the cells to a one-way trap. An ecological trap could also be
constructed to expose cancer cells to cells of the immune system, leading to
increased antigen presentation, or to disruption of the ability of
metastasizing cells to recruit appropriate host cells.

Finally we like to take up the important topic of tumor dormancy or latency,
a long time neglected area of cancer research. In 2016, S Malladi et al from
Massagués group published in Cell (32) about metastatic latency and immune
evasion. Latency competent cancer (LCC) cells were isolated from early stage
human lung and breast carcinoma cell lines. They showed stem-cell-like
characteristics and expressed SOX2 and SOX9 transcription factors. By
actively silencing WNT signaling, LCC cells were shown to enter quiescence
and evade innate immunity to remain latent for extended periods.

It is obvious from the development of different concepts and hypotheses
during a time period of more than 100 years that metastasis is complex and
not yet entirely understood. Cancer metastasis will be further delt with in
Chapter VIl under the aspect of physiological regulation and cancer
associated dysregulation. Chapter VIII will discuss potential new targets for
therapeutic intervention.

D. THE METASTASIS RESEARCH SOCIETY

The Metastasis Research Society (MRS) was founded in 1984 by the initiative
of the pharmacologist Kurt Hellmann. He had studied since 1970
antimetastatic drug function (33) and discovered the normalization of tumor
blood vessels by the drug ICRF 159 (34).
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The mission of the MRS is to support research on processes fundamental to
metastases. This includes supporting the exchange of information between
researchers, clinicians, industry and patients at regular two-year
Conferences. MRS members have estimated that only less than 5% of cancer
research funds worldwide go to studying metastatic disease. The MRS feels
that this is not appropriate because it is metastasis that makes cancer lethal.

The official Journals of the Society are “Clinical and Experimental
Metastasis” and “Cancer and Metastasis Reviews”.

Table 16 gives an overview of the 17 MRS Conferences held between 1984
and 2016. It is an international endeaver with many engaged people who did
pioneering work. The topic of the 2017 Conference in Berlin (Germany) in
November is the following: “Seed and soil: In vivo models of metastasis”.

Chapter Il

Key points:

1. The second half of the 20" century witnessed a steady progress in
molecular and cell biological research which had a great impact on
cancer research.

2. Environmental carcinogens were identified as mutagens, tumor
promoters as co-carcinogens and tumor viruses led to the discovery of
oncogens.

3. New molecular technologies allowed to study gene structure and
function and also protein structure and function, prerequisites for
unraveling the function of oncogens and tumor suppressor genes.

4. The latter growth controlling genes interfere with the cell cycle, a
complex machinery termed the cell cycle clock.
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5. Progress was also made in understanding the biology of cancer
metastasis. The bianual Conferences of the Metastasis Research Society
provide a continuous forum for exchange of information, new concepts

and ideas.
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Table 12 Milestones from molecular biology

1962

1968

1969

1972

1970

1973

1975

1977

1980

1980

1981

1982

1987

1989

1989

2000

F Crick*, ) Watson* and M Wilkins* Discovery of the DNA double helix

MF Perutz* Crystal structure of hemoglobin

JR Gall and ML Pardue In-situ-hybridization of DNA-DNA and RNA-DNA
First recombinant DNA molecule constructed (restriction enzymes and ligases)
KW Choi and AD Bloom Cloning of human lymphocytes

JD Rowley Philadelphia chromosome as result of a reciprocal translocation
High resolution 2D gel electrophoresis of proteins

R Roberts First description of splice mechanisms

D Metcalf and AW Burgess Cloning of hematopoietic cells in soft agar

AH Wyllie Characterization of apoptosis by DNA ladder

T Cech Description of self-splicing catalytic RNA

Insulin as the first drug produced by gene technology

First description of PCR for DNA amplification

M Cappechi, MJ Evans and O Smithies First gene knock-out mouse strain

PH Krammer Discovery of CD95/APO-1/Fas as the first cell death receptor

First complete sequence of the human genome

* Nobel Laureat
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Table 13 Milestones in molecular biology of cancer

- discovery of viral oncogenes and of cellular proto-oncogenes

- an oncoprotein that functions like a growth factor (v-Sis of Simian Sarcoma Virus
functioning similar to PDGF)

- discovery of the tumor suppressor gene (TSG) Rb

- importance of cellular signaling upon development of cell-to-cell communication during
evolution of metazoans

- deregulation of such signaling central to the formation of cancer

- the Src oncoprotein functioning as a protein kinase: attachment of phosphates to
tyrosine residues of proteins

- tyrosine phosphorylation primarily used by mitogenic signaling pathways

- the cell cycle clock having a restriction point (R); phosphorylated Rb (pRb) controlling
passage through the R point

- multistep tumorigenesis: a complex process reflected in the long time periods required
for most human cancers to develop; changes involving the activation of oncogenes and
the inactivation of TSGs

- critical contribution of telomerase to tumorigenesis
- genetic regulation of organ development and programmed cell death (PCD)
- discovery of cancer stem cells: objects of genetic alteration and clonal selection

- mechanistic studies of DNA repair
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Table 14 Concepts about the biology of cancer metastasis: Part|

1889 S Paget
1928 J Ewing
1976 PC Nowell

1977 1) Fidler

The seed and soil hypothesis
The anatomical/mechanical hypothesis
The clonal selection hypothesis of tumor progression

The hypothesis of selection of pre-existing variants from the primary

1980 V Schirrmacher The hypothesis that signals from the microenvironment induce

1984 RS Kerbel
1990 L Weiss
2001 PM Murphy
2002 JP Thierry
2003 U Fidler
2003 CA Klein

2003 G Dontu

shifts in tumor cell phenotypes
The concept of epigenetic mechanisms in tumor progression
The concept of metastatic inefficiency
The concept of chemokines and the molecular basis of metastasis
The concept of EMT transitions in metastasis;
The concept of tumor-stroma interactions
The concept of early tumor cell dissemination and tumor dormancy

The concept that a malignant switch may start in stem cells

Table 15 Concepts about the biology of cancer metastasis: Part |l

2003 PS Steeg

Metastasis suppressors alter signal transduction of cancer cells

2003 W and C Birchmeier Met, metastasis, motility and more

2003 J Massagué

2005 JM Pawelek
2005 RN Kaplan

2010 T Guise

A multigenic program mediating breast cancer metastasis to bone;
A genetic predisposition model

Tumour - myeloid cell fusion as a source of myeloid traits in cancer
The concept of the pre-metastatic niche

The concept of the metastatic niche
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2010-17 Metastasis as an organized process: communication between seed and soil
2013 KJ Pienta The cancer diaspora: Metastasis beyond the seed and soil hypothesis
2016 S Malladi Metastatic latency and immune evasion through autocrine

Inhibition of WNT

Table 16 Metastasis Research Society (MRS)

1984 Foundation in London (UK)
1. MRS Conference in London (UK) President K. Hellmann
1986 2. MRS Conference in Tieste (Italy) President T. Giraldi
1988 3. MRS Conference in Heidelberg (Germany) President V. Schirrmacher
1990 4. MRS Conference in Bethesda (USA) President G. Nicolson
1992 5. MRS Conference in Paris (France) President M. France-Poupon

1994 6. MRS Conference in Washington DC (USA) President L. Liotta

1996 7. MRS Conference in Ghent (Belgium) President M. Mareel

1998 8. MRS Conference in San Diego (USA) President W. Stetler-Stevenson
2000 9. MRS Conference in London (UK) President S. Eccles

2002 10. MRS Conference in Chicago (USA) President A. Raz

2004 11. MRS Conference in Genoa (Italy) President A. Albini

2006 12. MRS Conference in Tokushima (Japan) President S. Sone

2008 13. MRS Conference in Vancouver (Canada) President D. Welch
2010 14. MRS Conference in Philadelphia (USA), President P. Steeg
2012 15. MRS Conference in Brisbane (Australia) President E. Thompson
2014 16. MRS Conference in Heidelberg (Germany) President J. Sleeman
2016 17. MRS Conference in Chengdu (China) President Y. Kang
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CHAPTER Ill. TARGETED THERAPIES WITH SMALL

MOLECULE INHIBITORS

The advances of the past 60 years described in Chapter Il in molecular- and
tumor- biology have led to the identification of key molecular pathways that
control tumor progression. Characteristic alterations of neoplastic cells were
found which include specific translocations, activating mutations or gene
amplifications. These discoveries enabled academic research institutions and
the pharmaceutical industry to develop new anticancer agents targeting
specific molecules considered to be of importance: signal-transduction
inhibitors, anti-angiogenic and vascular-disrupting agents or apoptosis
modulators.

Tumor directed monoclonal antibodies (mabs) are often added to targeted
therapies. Here, these will be delt with in a separate Chapter (Chapter 1V,
Immunotherapy). Mabs are classical molecules of the immune system and
their mode of action is quite different from that of small molecule inhibitors.
Therapeutic mabs target specific antigens found at the tumor cell surface
(e.g., transmembrane receptors) or extracellular growth factors. In contrast,
small molecule inhibitors can penetrate the cell membrane to interact with
targets inside the cell. Small molecule inhibitors are usually designed to
interfere with the enzymatic activity of the target protein, for instance a
tyrosine kinase.

This Chapter is based primarily on the excellent textbook “Targeted
Therapies in Oncology” (1).

A. SIGNAL TRANSDUCTION BY GROWTH FACTOR RECEPTORS

Before going into details about small molecule inhibitors, it seems worthwile
to summarize basic principles in cells of signal transduction as described in
two excellent textbooks (2,3).

The vital clues about oncoprotein functioning came from studies of normal
cells and how they regulate their growth and division. Normal cells receive
growth-stimulatory signals from their surroundings. These signals are
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processed and integrated by complex circuits within the cell. Eventually, a
decision is made whether cell growth and division is appropriate or whether
the cell should remain quiescent or become senescent (2). Proper tissue
architecture depends absolutely on maintaining appropriate proportions of
different constituent cell types within a tissue, on the replacement of missing
cells, and on discarding extra, unneeded cells.

Signal transduction from the outside of the cell to the DNA of the cell
nucleus consists of the following components and devices:

i) ligands,

ii) cell surface receptors,
iii) adapters and enzymes,
iv) signaling cascades and

v) transcription factors.

These signaling processes are part of the larger problem of cell-to-cell
communication. Cell-to-cell communication needed to be addressed and
solved at the time when the first multicellular animals (metazoan) arose 600
to 700 million years ago. Wounds must be repaired, and attacks by foreign
infectious agents must be warded off through the concerted actions of many
cells within tissues. This is why cells in a living tissue are constantly
communicating. Growth factors are part of this communication network.
These are relatively small proteins that are released by some cells, make their
way through intercellular space, and eventually impinge on yet other cells,
carrying with them specific biological messages (2,3).

One example from wound healing may illustrate this. While the platelets in
a wound site are in the process of aggregating as part of the clot formation,
they also iniate the wound-healing process. They do this by the release of
growth factors, notably platelet-derived growth factor (PDGF). This is a
potent stimulator of fibroblasts, which form the connective tissue including
the cell layers beneath epithelia. PDGF attracts fibroblasts into the wound
site and then, as a mitogen, stimulates their proliferation. This example
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mirrors hundreds of similar cell-to-cell communication routes that operate
within living tissues to encourage or discourage cell proliferation (2).

Initiation of signal transduction through the interaction of an extracellular
ligand with a specific receptor can take several forms. Steroid hormones
readily cross cellular membranes and can therefore bind directly to
intracellular nuclear hormone receptors, which regulate gene expression.
Polypeptide growth factors and cytokines, in contrast, bind the extracellular
regions of transmembrane receptors with intrinsic or associated tyrosine
kinase activity.

The normal versions of oncogene-encoded proteins often serve as
components of the machinery that enables cells to receive and process
biochemical signals regulating cell proliferation. The first clues as to how cell-
to-cell signaling via growth factors operates came from biochemical analysis
of the v-src oncogene of Rouse sarcoma virus (RSV) and the protein Sarc (Src)
that it specifies. Src was found to operate as a protein kinase, an enzyme that
removes a high-energy phosphate group from ATP and transfers it to a
suitable protein substrate (4). Src was found to be quite different from all
other protein kinases that had been known. While the latter attach
phosphate groups to the side chains of serine and threonine amino acid
residues, Src phosphorylated distinct tyrosine residues of its protein
substrates (5). More than 99% of the phosphor-amino acids in normal cells
are phosphor-threonine or phosphor-serine. Phosphor-tyrosine constitutes as
little as 0.05 to 0.1 % of the cell’s total phosphor-amino acids (2).

Another oncogene, erbB, had been discovered in the genome of Avian
erythroblastosis virus (AEV), a transforming retrovirus that rapidly induces a
leukemia of the red blood cell precursors (erythroleukemia). In 1984 it was
discovered that the oncogene product ErbB had sequence homology with the
epidermal growth factor (EGF) receptor (EGF-R). It was a sensation because
now two areas of cell biology became united: A cellular growth factor
receptor gene could have been hijacked by a virus to become an oncogene.
In 1983 it was found that the amino acid sequence of PDGF was closely
related to the oncoprotein Sis encoded by the v-sis oncogene of Simian
sarcoma virus (SSV). Thus, a cellular gene for a growth factor could also have
been hijacked by a virus to become an oncogene.
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Another example is Friend leukemia virus (FLV), whose gp55 env gene was
found to act as a mimic of the growth factor erythropoietin (EPO). Normally,
when oxygen tension in the blood is less than normal, EPO is released from
the kidneys and binds to the EPO receptors displayed by cells in the bone
marrow that are immediate precursors of erythroblasts. This stimulates them
to increase in numbers and to differentiate into erythrocytes (2).

It became more and more clear that growth factors and tyrosine kinase
receptors (TK-Rs) are often involved in tumor pathogenesis. Examples are
PDGF/PDGF-R , EGF/EGF-R, FGF/FGF-R, HGF(SF)/Met, VEGF/VEGF-R, IGF/IGF-
R1 and SCF/Kit (2,3).

The binding of ligand to a TK-R induces its dimerization. This results in
transphosphorylation of tyrosine residues located in the cytoplasmic domain
of a receptor outside the immediate kinase domain. This phosphorylation
causes selective binding sites for the SH2 domains of intracellular targets,
including phosphatidyl-inositol-3-kinase (PI3K) and to activation of
downstream signaling pathways (2,3,6).

The pleiotropic actions of a protein kinase usually derive from its ability to
phosphorylate and thereby modify the functional state of a number of
distinct substrate proteins. As an example serves here the Akt/PKB kinase,
which is a serine/threonine kinase. This enzyme, by degrading ATP to ADP,
can phosphorylate GSK-3B, HIF-1o0 and Bad. This event inactivates the
antiproliferative actions of GSK-3B and the pro-apoptotic powers of Bad, and
activates the angiogenic (blood vessel-inducing) powers of HIF-1a (5). Three
events initiated by one enzyme which promote tumor growth.

B. RATIONAL BASIS OF A TARGETED DRUG EXEMPLIFIED WITH
GLEEVEC

The development of molecularly targeted drugs has a rational basis. The
first step consists of selecting the target. Defective proteins in cancer cells are
attractive targets for drug development. Functional considerations, however,
dictate that only a subset of defective proteins are attractive. Their
biochemistry is of importance. Pharmaceutical chemists generate and
explore a wide array of potential drugs. Drug candidates must then be tested
on cell models as an initial measurement of their utility in whole organisms.
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Pre-clinical tests involve studies of the drug’s action in laboratory animals.
Thereafter, promising candidate drugs are subjected to rigorous and
extensive clinical Phase | trials in humans. Phase Il and Ill trials are finally
necessary to provide credible indications of clinical efficacy (1-3).

Table 17 summarizes the long way to the first molecularly targeted cancer
therapy.

The Bcr-Abl oncoprotein was discovered and validated as an attractive
target and finally used as an object of rational drug design. This particular
story begins in 1914, when the German cytologist T Boveri proposed that
chromosomal defects might cause a cell to proliferate abnormally, resulting in
the formation of some kind of tumor (7). 56 years later, in 1960, two
cytologists working in Philadelphia noted that an abnormal, unusually small
chromosome (22qg-) was characteristically present in the great majority of
cells of chronic myelogenous leukemia (CML). Since that time, 22g- had been
called the Philadelphia chromosome (Ph). Another 12 years later, a
researcher in Chicago demonstrated that a reciprocal translocation between
chromosomes 9 and 22 was responsible for creating the Ph chromosome. We
now know that this particular translocation is present in more than 95% of
cases of CML.

In 1982, molecular biologists discovered that the gene abl, the human
homolog of the mouse c-abl proto-oncogene, participates directly in these
chromosomal translocations. The q34 region of chromosome 9 carrying most
of the abl gene is transferred to the q11 region of chromosome 22, replacing
a larger segment of chromosome 22 that is translocated reciprocally to
chromosome 9, making it to 9q+. The net result consists in a fusion of the 5°-
portion of the abl gene with a 3 -proximal portion of a gene termed
“breakpoint cluster region (BCR)” which normally resides at 22q1l1.
Depending on the precise location of the breakpoint in BCR, three distinct
Bcr-Abl fusion proteins may be formed which are found in acute
lymphoblastic leukemia (ALL), CML and chronic neurophilic leukemia (CNL).

Within two years of its discovery, the Bcr-Abl fusion protein was found to
function as a constitutively activated tyrosine kinase. It functions in this
respect like the Abl oncoprotein of Abelson mouse leukemia virus. In the early
1990s, a research program was begun to develop low-molecular weight
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antagonists of the Bcr-Abl tyrosine kinase. A drug emerged, imatinib mesylate
(Gleevec) which was able to bind the catalytic cleft within the ATP binding
pocket of the Bcr-Abl tyrosine kinase. This drug, when used at therapeutic
concentrations, appears to target only 4 of the 90 or so human tyrosine
kinases.

In 1996, Gleevec had been found to inhibit the growth of CML cells in vitro
while having no effect on normal bone marrow cells. The initial clinical trials,
begun in 1998, revealed remissions from disease in all of the 31 treated CML
patients, with only minimal side effects registered, even when taken daily for
many years. Four years later, 6000 patients had already been entered into
Gleevec clinical trials. Treatment of early-stage CML led to a hematological
response in 90% of cases: PCR analysis revealed an extraordinary decline in
the levels of Bcr-Abl mRNA in blood cells. About 60% of the patients who had
already progressed to blast crisis responded to Gleevec, but they generally
relapsed after a period of some months.

Gleevec was shown to have the capacity to inhibit also two other kinases:

that of platelet-derived growth factor receptor (PDGFR) and that of KIT,
which is the receptor for stem cell factor (SCF). Patients suffering from
another myeloproliferative disease (hyper-eosinophilic syndrome) also
showed a complete response to Gleevec. Furthermore, almost 70% of
patients suffering from gastrointestinal stromal cancers (GISTs) responded
with clear regressions of their tumors (8).

The successful development of the small molecule inhibitor (SMI) Gleevec
paved the way for the development of many other highly targeted
compounds (9). Such SMis include EGF receptor antagonists for treating a
wide variety of tumor types, proteasome inhibitors and inhibitors of mTOR, a
master regulator of cell physiology.

With regard to the names of therapeutic targeting small molecules, the
following formula might be helpful: Name = prefix + substem + stem. The
stem —ib stands for small molecule with inhibitory properties. The substem -
tinib stands for tyrosine kinase inhibitor. The substem -zomib stands for
proteasome inhibitor. The substem -ciclib stands for cyclin-dependent kinase
inhibitor and the substem -parib for poly ADP-ribose polymerase inhibitor.
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Further information about targeted cancer therapies can be obtained from
Blay et al. (9).

C. SIGNALING PATHWAYS AS TARGETS FOR SMALL MOLECULE
INHIBITORS

Signal transduction inhibitors block the activities of molecules that
participate in signal transduction, the process by which a cell responds to
signals from its environment. During this process, the signal is relayed within
the cell through a series of biochemical reactions that ultimately produce the
appropriate response of the cell. In some cancers, the malignant cells are
stimulated from within the cell to divide continuously without being
prompted to do so by external growth factors. Signal transduction inhibitors
interfere with this inappropriate signaling.

Table 18 lists 5 important targeted pathways for SMls.
i) PATHWAY PI3K-AKT-mTOR

The “phosphatidyl-inositol 3-kinase” (PI3K) — “Akt serine/threonine kinase”
(AKT) — “mammalian target of rapamycin complex” (mTORC) signal axis (PI3K-
AKT-mTOR) is critically important for normal and cancerous cell functions
(10). The pathway is activated by cell surface receptor stimulation and sends
signals to downstream effector molecules that control cell cycle proliferation,
growth, survival, protein synthesis, and glucose metabolism. Aberrant
activation of the pathway is one of the most frequent occurrences in human
cancer and plays an important role in multiple aspects of tumorigenesis (1).

The tumor suppressor gene product “phosphatase and tensin homolog”
(PTEN) acts as a lipid phosphatase that regulates major signal transduction
pathways and effectively inhibits PI3K-mediated signaling. Genetic mutations
of PTEN with functional link to mTOR signaling have been described for
cancer of prostate, breast, lung, bladder, kidney, ovary, endometrium,
thyroid, brain and for melanoma (1).

mTor, a serine-threonine kinase, is a major biological switch, coordinating
an adequate response to changes in energy uptake (amino acids, glucose),
growth signals (hormones, growth factors) and environmental stress. mTor
kinase is highly conserved through evolution from yeast to man and controls
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autophagy. mTor hyperactivation has been detected in several human
cancers. mTor exists in two different complexes in cells, mTorC1 and mTorC2
which could both be targeted by potential anticancer agents. Rapamycin is a
selective and allosteric inhibitor of mTorl but not of mTor2. ATP-competitive
inhibitors of mTor which act on both complexes, such as 0SI-027, could result
in a better biological response and have entered clinical trials (11).

In cells, rapamycin and analogs such as everolimus suppress geroconversion
of cells from quiescence to senescence. Dual mTorC1/C2 inhibitors such as
everolimus or AZD8055 were superior to rapamycin in suppressing
hypertrophy, senescent morphology, Oil Red O staining and increasing so-
called “chronological life span (CLS)”. It was suggested that at doses lower
than anti-cancer concentrations, pan-mTor inhibitors can be developed as
anti-aging drugs (12).

mTor is constitutively activated in head and neck aquamous cell carcinoma
(HNSCC). The pan-mTor inhibitor AZD8055 induced in vitro dramatic cell
death in Hep-2 HNSCC cells through autophagy and increased in vivo the
survival of Hep-2 transplanted mice through a significant reduction of tumor
growth, without apparent toxicity. Its anti-tumor activity was more potent
than that of rapamycin (13).

AZD8055 showed excellent selectivity (approximately 1,000-fold) against all
class | PI3K isoforms and other members of the PI3K-like kinase family. There
was no significant activity against a panel of other 260 kinases (14). The drug
is in Phase I clinical trials.

Another pan-mTor inhibitor, temsirolimus, was found to target multiple
hallmarks of cancer (15) and to impede growth of murine mesothelioma in
vivo. It stimulated tumor cell apoptosis, inhibited tumor angiogenesis,
enhanced tumor lymphocyte abundance and blocked pro-tumor myeloid cell
recruitment (16).

Hepatocellular carcinoma (HCC) is one of the most common lethal human
malignancies worldwide. Its advanced status is frequently resistant to
conventional chemotherapeutic agents and radiation. The dual PI3K/mTor
inhibitor NVP-BGT226 was shown to have a potent effect on HCC cell lines.
This was true in vitro under normoxic and hypoxic conditions (17).
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ii) PATHWAY BRAF AND MEK

The “mitogen-activated protein kinase” (MAPK) pathway is an intracellular
signaling pathway regulating cell cycle and other cellular functions. This
pathway is commonly aberrant in human tumors. Its activated kinase cascade
drives a serial phosphorylation of the MEK and ERK kinases that leads to cell
proliferation and survival. With respect to cell proliferation, ERK1/2 is
specifically important in the expression of cyclin D1 to promote progression
through the G1 phase of the cell cycle.

A paradigmatic example of this activation is melanoma, where deregulation

of the MAPK pathway is evident in over 90% of the cases. In about 50% of

cases, this is due to the BRAFV600

approximately 7% of all cancers in general, which makes them the most

mutation. This mutation is present in

prevalent single-nucleodide point mutation in a protein kinase in cancer (1).

Vemurafenib and dafratenib selectively bind to the ATP-binding site of
BRAF-V600E kinase. Trametinib is a small molecule inhibitor of mitogen-
activated extracellular signal-regulated kinase (MEK). Interestingly,
trametinib was shown to be able to modulate cancer multidrug resistance by
targeting the ABCB1 transporter (18).

Inhibition of BRAF with vemurafenib was reported to improve survival in
patients with the most common BRAF(V600E) mutation and in patients with
the less common BRAF(V600K) mutation (19). Dabrafenib, similar to
vemurafenib, showed superior clinical outcome when compared to
dacarbazine in patients with BRAF(V600E)-positive advanced melanoma (20).
Combining dabrafenib with the MEK inhibitor trametinib further improved
overall survival in this population of melanoma patients (21,22).

iii) PATHWAY KIT

The identification of specific genetic alterations in the KIT gene
(translocations, deletions, point mutations, amplifications) enables to
distinguish specific groups within tumor types (gastrointestinal stromal tumor
(GIST), melanoma, thymic carcinoma). The nature of these driver mutations in
tyrosine kinases enables to guide the administration of inhibitors of KIT, such
as imatinib, sunitinib and others in a clinical setting. The KIT protein was
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among the first described as activated through gene mutations and, as a
driver, in specific tumor types in humans (1).

Some human cancers produce as many as three distinct growth factors (e.g.
tumor growth factor o (TGF-a), stem cell factor (SCF), insulin-like growth
factor (IGF)) and at the same time express the receptors for these ligands,
thereby establishing three autocrine signaling loops simultaneously. In one
study of small cell lung cancer (SCLC) patients, those whose tumors expressed
Kit, the receptor for SCF, survived for an average of only 71 days after
diagnosis while those whose tumors lacked Kit expression survived on
average 288 days (2).

Table 18 lists among the KIT SMIs imatinib which was the first successful
SML. Its long way of development has been described above under B. Other
similar drugs developed thereafter are also listed.

iv) PATHWAY ALK

Anaplastic lymphoma kinase (ALK) was originally identified in 1994 as a
tyrosine kinase activated by chromosomal translocation in an uncommon T
cell lymphoma called anaplastic large-cell ymphoma. The translocation which
occurred in this disease with a frequency of 50-75%, resulted in the fusion
gene product NPM1-ALK. Physiological activation of ALK occurs through
binding of membrane-bound ALK with its putative ligands midkine or
pleiotropin. This results in homodimerization and activation of the ALK kinase
by transphosphorylation.

In certain tumor cells, ALK gene rearrangements result in a fusion protein
that is aberrantly expressed and subject to ligand-independent dimerization
and constitutive activation of ALK. Also, mutations in the ALK kinase domain
result in constitutive activation of the ALK kinase activity (1). In these
situations, ALK apparently functions as an oncogene. This seems true for
tumor types, such as non-small cell lung cancer (NSCLC), non-Hodgkin's
lymphoma or neuroblastoma (23). The downstream effectors of ALK include
the Ras/MAPK/ERK, PI3K/AKT, and JAK3/STAT3 pathways which play
important roles in cell survival and proliferation (1-3).

The targeting of ALK in lung cancer by crizotinib has been reviewed recently
(24). The review starts with the discovery of the EML4-ALK fusion oncogene
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and culminates in the recent validation of ALK as a therapeutic target in
patients with ALK-rearranged NSCLC.

The emergence of ALK as a new therapeutic target in NSCLC and beyond has
been one of the success stories of modern oncology. Spectacular has been the
short timeline from the identification of ALK gene rearrangements in NSCLC
(2007) to FDA approval of crizotinib for this indication (2011).

However, there are a number of challenges that scientists, clinicians, and
patients alike will face in the years to come. Elucidating mechanisms of
acquired resistance to ALK inhibitors and developing strategies that may
overcome these will be of paramount importance to achieve long-term
disease control in respective targeted patients (1).

v) PATHWAY MET

MET was discovered in 1984 (25) and subsequently found to be a RTK
located at chromosome 7q21-q31 (26). MET and its associated physiological
ligand hepatocyte growth factor/scatter factor (HGF/SF) have become
attractive targets in several types of cancer. HGF/SF, the sole ligand of MET, is
secreted by mesenchymal cells, particularly fibroblasts and smooth muscle
cells (27), but it can also be secreted by tumor cells. In normal cells, HGF-
induced MET activation is under tight regulation by paracrine ligand delivery.

MET overexpression correlates with poor prognosis in several solid tumors
(28). Activation of the MET pathway plays a primary role in cancer cell
survival, growth and migration (29,30). MET in association with translocated-
promoter region (TPR) was found to be a potent oncogene in the early 1990s.
Mechanisms of MET activation include i) binding to its ligand HGF with
associated paracrine/autocrine activation, ii) activating mutations, including
those causing constitutive kinase activity, iiij MET gene
overexpression/amplification and iv) decreased degradation (1).

MET pathway inhibitors include zivatinib, cabozantinib, crizotinib and

foretinib (Table 18). Tivatinib induces G2/M arrest and apoptosis by

disrupting tubulin polymerization in hepatocellular carcinoma (31). It affects

the apoptotic and proliferative machinery downstream of c-MET (32). The

multiple tyrosine kinase (MET, RET, VEGFR2) inhibitor cabozantinib has been

approved in the USA for treatment of patients with advanced renal cell
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carcinoma who have received prior antiangiogenic therapy (33). Foretinib is a
potent inhibitor of oncogenic ROS1 fusion proteins that may be useful in
cases of resistance to crizotinib (34). It blocks proliferation, induces anoikis,
and impairs ovarian cancer metastasis (35).

The epidermal growth factor receptor (HER) family of tyrosine kinase (TK)
receptors will be dealt with under mabs in the next chapter. Other signaling
pathways targeted by SMis exist as well but can not be discussed here. SMis
have been developed to inhibit the Fibroblast Growth Factor Receptor (FGFR)
pathway, the Apoptosis pathways or the Androgen pathways. Other SMis
target stem cells, histone deacetylase, DNA repair, or mitosis. Angiogenesis
inhibitors block the growth of new blood vessels to tumors. Such blood
supply is necessary for tumors to grow beyond a certain size because blood
provides oxygen and nutrients that tumors need for continued growth. Some
targeted therapies that inhibit angiogenesis interfere with the action of
vascular endothelial growth factor (VEGF), a substance that stimulates new
blood vessel formation.

Targeted therapies imply in their simplest version a therapy with a specific
molecular target. Any therapy that works must have a molecular target. In
some cases, the target is discovered first, while in others (e.g. aspirin), the
drug is discovered before the target. One of the best SMI drugs, imatinib, has
more than one molecular target. A targeted therapy should attack a
biologically important process (not necessarily a single molecule), one central
to a hallmark of cancer (15). Such therapy should be applied to a selected
targeted population of patients. There is immense potential for improving
efficacy and diminishing toxicity through application of genomic, proteomic,
and pharmacogenomics technologies.

D. EFFECTS AND SIDE EFFECTS OF SIMs

Strengths and weaknesses of Targeted Therapies in Oncology, based on (1),
are summarized in Tables 19 and 20.

i) Anti-tumor activity of PI3K-AKT-mTor inhibitors has been modest, even in
patients with tumors harboring mutations in this pathway. Cabozantinib, an
oral inhibitor of Met, VEGFR, and AXL, was found superior to the mTor
inhibitor everolimus in advanced renal cell carcinoma (36).
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ii) With BRAF and MEK inhibitors there has been significant anti-tumor
activity in metastatic melanoma.

iii) Tumors with KIT mutations on exon 9 or 11 were generally responsive to
KIT inhibitors.

iv) There has been continuous progress in treating advanced ALK-positive
NSCLC. Although crizotinib shrinks tumors in a large proportion of such
patients, most experience a relapse within the first year of treatment. A next-
generation ALK inhibitor, alectinib, has recently shown encouraging results in
advanced NSCLC, including those with brain metastases (37). In an early-stage
clinical trial, 48% of patients responded to this drug, with a median duration
of response of 13,5 months.

v) MET inhibitors showed substantial promise in clinical trials.

vi) Midostaurin, a multi-kinase FLT3 inhibitor, was found to be effective in
AML with FLT3 mutations when combined with chemotherapy (38).

vii) Palbociclib, a cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitor was
found effective in hormone resistant metastatic breast cancer (39).

In spite of the enormous efforts of pharmaceutical companies to develop
these new types of therapeutics, there are a number of weaknesses and
challenges that need to be solved. The challenges from the side of tumor cells
include:

i) feedback loops and cross talk that can compensate for targeted inhibition,
(ii) selection for mutations leading to resistance and

iii) selection of kinase switch variants.

The challenges from the side of the tumor-bearing host include

i) normal tissue toxicity including the immune system and the blood clotting
system,

ii) the appearance of cutaneous squamous carcinoma,
iii) identification of suitable patients,

iv) the potentiation of adverse events in case of combination with CT.
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Table 21 lists possible side effects. The most frequent ones relate to the skin.
In addition, there are common and serious side effects. Many side effects are
similar to those of standard chemotherapeutic drugs. Thus, TTs have
limitations and side effects.

Resistance can occur in at least two ways: the target itself can change
through mutation so that the TT no longer interacts well with it, and/or the
tumor finds a new pathway to achieve tumor growth that does not depend
on the target. Perhaps, TTs work best in combination. A recent study revealed
that using two drugs that target different parts of the cell signaling pathway
that is altered in melanoma by the BRAF V600E mutation slowed the
development of resistance and disease progression to a greater extent than
using just one targeted therapy (22).

The idea to use multiple targets to avoid resistance development seems
rational. Since SMIs have unwanted side-effects, the use of multiple SMis
would, however, also create multiple side-effects. It may be unpredictable in
which way the drug effects will interact.

The situation is quite different with immunotherapy (Chapter IV) which has
much less side effects. For instance, in immunotherapy, multiple tumor-
associated antigens (TAAs) can be targeted at the same time without any
problem.

Scientists had expected that TTs would be less toxic than traditional CT drugs
because cancer cells are more dependent on the selected targets than are
normal cells. However, as an enormous number of clinical studies has
revealed, TTs with SMIs can have substantial side effects. The most common
are diarrhea and liver problems, such as hepatitis and elevated liver enzymes.

Additional side effects are summarized in Table 21. Changes in the skin are
rather frequent and not only found by drugs interfering with epithelial
growth factor receptor (EGF) mediated signaling. It appears that signaling
pathways are not that tumor-specific as one had thought or would have liked.
Problems may be related not only to lack of tumor-specificity but also may
have to do with delivery, dosing and timing.

In 2013, 40 drugs were dropped from the global oncology pipeline (40). 12
drugs failed in Phase Il development. None of the pivotal trials incorporated
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molecular biomarkers for patient stratification. The largest number of drug
terminations (50%) occurred in Phase | development.

It is obvious from the many new TT drugs developed in recent years by the
big pharma companies that there exists a competition to obtain part of the
market “cake” of the health system. Generally, competition is good and can
lead to the best possible solution. However, it may narrow at the same time
the view for development of drugs which derive from other areas such as
immunology.

Table 22 lists examples of cancer types for which the indicated SMIs have
been approved by the FDA. The cancer types include carcinomas, sarcomas
and lymphomas. Accelerated by the National Cancer Act of 1971 and then by
a responsive research infrastructure and increasingly innovative regulatory
environment, cancer research today delivers new treatments to patients
faster then ever. In just one year's time, the US FDA has approved 20
therapies for more than a dozen different types of cancer.

Chapter Il

Key points:

1. Advances in molecular and tumor biology enabled the identification of key
molecular pathways that control tumor progression.

2. Targeted therapies aim at blocking signal transduction through such
pathways. Small molecule inhibitors (SMls) serve this purpose and can be
given orally.

3. Imatinib mesylate (Gleevec) is an example of a successful small molecule
inhibitor that functions as an antagonist of the Bcr-Abl tyrosine kinase active
in CML and other leukemias. Its development involved many steps and lasted
for several decades.

4. A whole plethora of SMIs have been developed by pharma companies and
were approved by FDA not only for the treatment of leukemias but also for
the treatment of sarcomas and carcinomas.
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5. There are still a number of weaknesses and challenges of SMIs that need to
be solved in the future.
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Table 17 The long way to the first molecularly targeted therapy

1914 T Boveri Discovery of chromosomal defects in cancer cells
1960 Discovery of the Philadelphia chromosome (22g-) characteristic for
cML
1972 Discovery of the reciprocal chromosomal translocation 9/22 in 95% of
cases of CML
1982 Discovery that the gene Abl participates in the 9/22 translocation by
fusion with the gene Bcr at chromosome 22q11
1984 Discovery of the Bcr-Abl fusion protein and its functioning as a
constitutively activated tyrosine kinase
1990 Start of a research program to develop low-molecular weight
antagonists of the Bcr-Abl tyrosine kinase
1996 Identification of a drug emerged which was able to bind the catalytic
cleft within the ATP binding pocket of the Bcr-Abl enzyme
1998 Positive results from testing this drug, imatinib mesylate (Gleevec) on
CML cells in vitro and from initial clinical trials in CML patients

2002 Positive results from further 6000 CML patients in Gleevec clinical trials
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Table 18 Targeted therapy of signaling pathways with small molecule
inhibitors (SMls)

Targeted Pathway examples

i) Pathway PI3K-AKT-mTor  buparlisib, pictilisib, idelalisib, BEZ 235,
NVP-BGT226, XL765, GDC-0980, SF1 126,
MK-2206, GSK690693, AZD8055, OSI-027,
everolimus, temsirolimus

ii) Pathway BRAF and MEK  vemurafenib, dabrafenib, trametinib

iii) Pathway KIT imatinib, sunitinib, nilotinib, masetinib,
dasatinib, ponatinib, regorafenib, sorafenib,
pazopanib, dovitinib, motesanib, valatinib

iv) Pathway ALK crizotinib, HSP90 inhibitors

v) Pathway MET tivatinib, cabozantinib, crizotinib, foretinib
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Table 19 Targeted therapies with SMIs : strength and weaknesses

Part |

i) PIBK-AKT-mTor inhibitors: - anti-tumor activity modest, even in patients
with tumors harboring mutations in PI3K pathway;
Challenges: - the pathway is complex; feedback loops and cross talk can
compensate for targeted inhibition;
- biomarkers to select the patient population most likely to
respond have not yet been identified;
- agents to date may be unable to sufficiently inhibit this pathway
due to normal tissue toxicity;
ii) BRAF and MEK inhibitors: - significant anti-tumor activity in metastatic
melanoma;
Challenges: - toxicities: skin changes, low-grade cuSCC?, headache, nausea,
fatigue, and vomiting;
- the appearance of cuSCC? demands a better understanding of
the biology;
iii) KIT inhibitors: - tumors with KIT mutations on exon 9 or exon 11 are
generally responsive to tyrosine kinase inhibitors (TKIs);
Challenges: - therapeutic pressure selects for mutations at other exons;

- antibodies to KIT may represent a future alternative;

a = cutaneous squamous carcinoma
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Table 20 Targeted therapies with SMiIs : strength and weaknesses

Part Il

iv) ALK inhibitors: - a new therapeutic target in NSCLC
- ALK gene rearrangements in NSCLC (2007)
- FDA approval of crizotinib for NSCLC (2011)
- FDA approval of alectinib for NSCLC (2015)
Challenges: - identification of suitable patients
- how to overcome acquired resistance to achieve long-term
disease control
v) MET inhibitors: - substantial promise in clinical trials
Challenges: - tumor cells may undergo a kinase switch when exposed
for instance to erlotinib
vi) FLT3 inhibitors - midostaurin, a multi-kinase inhibitor, effective in AML
with FLT3 mutations in combination with chemotherapy
Challenges: - side effects in immune system and blood clotting
vii) CD4/6 inhibitors - palbociclib effective in hormone resistant metastatic
breast cancer
Challenges : - severe adverse events substantially higher than with

hormone therapy
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Table 21 Possible side effects from targeted small molecule inhibitory drugs

Skin:
- Changes in how the skin feels
- Increase of photosensitivity
- Rash (scalp, face, neck, chest, upper back)
- Dry skin
- ltching
- Red, sore cuticles (the areas around the nails)
- Hand-foot syndrome (HFS), painful
- Changes in hair growth
- Changes in hair or skin color
- Changes in and around the eyes
Common and serious side effects:
- High blood pressure
- Bleeding or blood clotting problems
- Slow wound healing
- Heart damage
- Swelling

Other side effects are similar to those of standard chemotherapy drugs
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Table 22 Examples of cancer types for which targeted small molecule
inhibitors have been approved by the FDA

Brain cancer : everolimus (Afinitor)

Breast cancer: everolimus (Afinitor), tamoxifen (Nolvadex), toremifene (Fareston),
fulvestran (Faslodex), anastozole (Arimidex), exemestane (Aromasin),
lapatinib (Tykerb), letrozole (Femara), emtansine (Kadcyla)

Colorectal cancer: ziv-aflibercept (Zaltrap), regorafenib (Stivarga)

Gastrointestinal stromal tumor: imatinib mesylate (Gleevec), sunitinib (Sutent)

regorafenib (Stivarga)

Kidney cancer: sorafenib (Nexavar), sunitinib (Sutent), pazopanib (Votrient),

Liver cancer: sorafenib (Nexavar), regorafenib (Stivarga)

Lung cancer: crizotinib (Xalkori), erlotinib (Tarceval), gefitinib (Iressa)

Pancreatic cancer: erlotinib (Tarceva), everolimus (Afinitor), sunitinib (Sutent)

Prostate cancer: cabazitaxel (Jevtana), enzalutamide (Xtandi), abiraterone acetate (Zytiga)

Skin cancer: vismodegib (Erivedge), sonidegib (Odomzo), vemurafenib (Zelboraf)

Leukemia: tretinoin (Vesanoid), imatinib mesylate (Gleevec), dasatinib (Sprycel)

Lymphoma: vorinostat (Zolinza), romidepsin (Istodax), bexarotene (Targretin)

Multiple Myeloma: bortezomib (Velcade), carfilzomib (Kyprolis), panobinostat (Farydak)
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CHAPTER IV. IMMUNOTHERAPY

A. AUTO-BIOGRAPHICAL NOTES

With this Chapter we move from biochemistry to immunology. It may be
appropriate at this step of transition to introduce myself. A short CV is shown
in Table 23. In addition, this review includes several auto-biographical notes.
These are separated from the main text as numbered BOXES. The first two
boxes relate to my decision in 1962 to study biochemistry and in 1969 to do
my PhD thesis in immunology. The text of the BOXES can be found in Chapter
10.

BOX 1 1962 Biochemistry

BOX 2 1969 Immunology

B. MILESTONES FROM IMMUNOLOGY

Chapter IV is based on a number of excellent textbooks in immunology,
some of which have reached already the 6 to 12" Edition (1-6).

The German Association of Immunology (DGfl), founded in 1967, celebrates
this year (2017) its 50" year of existence. As part of the International Union of
Immunological Societies (IUIS), the DGfl organized in 1989 the 7t
International Congress of Inmunology in Berlin.

Immunology as a science has gone through a period of active development
which was strongly influenced by new techniques from molecular biology.
Vice versa, progress in molecular biology has also been influenced by new
techniques from immunology. Immunological methods helped to purify
proteins and to identify specific complementary DNA (cDNA) clones.
Monoclonal antibody technology has helped to identify proteins and their
location in cells, has transformed many fields of medicine and ranges even
into fields from agriculture to the food science industry.
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Before mentioning the various milestones in the field of immunology, it
may be worth quoting some statements from 2017 of the “Annual Report on
Progress Against Cancer From the American Society of Clinical Oncology”
(ASCO) (7).

“A hundred years in the making, cancer immunotherapy is now a standard
treatment option for people with a growing number of different cancers. In
2016 alone, the FDA approved immunotherapies for advanced forms of lung,
kidney, bladder, and head and neck cancers, as well as Hodgkin lymphoma
(HL). For some people with these advanced-stage cancers, the advent of
immunotherapy is truly life changing. It often offers the only chance to live
longer and better. And many believe that this first wave of success with
cancer immunotherapy is just the beginning.”

Another interesting quotation from this ASCO special article concerns
cancer by the numbers: “ The good news is that, for most people, a diagnosis
of cancer is not as grim as it used to be. Today, 68% of adults and 81% of
children with cancer will be alive at least 5 years after diagnosis. This is a big
improvement from the 1970s, when only 50% of adults and 62% of children
were surviving 5 years. “

“New approvals” by the FDA from November 1, 2015, to October 31, 2016
included three monoclonal antibodies (mabs) : Daratumumab , Necitumumab
and Atezolizumab. “New uses” included 4 mabs: Nivolumab, Obinutuzumab,
Pembrolizumab and Atezolizumab.

Since 2011, the FDA approved 15 immunotherapies in oncology. This led the
ASCO to chose “Immunotherapy 2.0” as its cancer advance of the year. It is
the second time in a row that immunotherapy was selected.

C. MONOCLONAL ANTIBODIES

This part of description of state-of-the art of immunotherapy relates to B
cells and their antibody products. While the success of therapeutic mabs is
encouraging, it is important to consider the historic development that made
all this possible.

Table 24 lists milestones from immunology research relating to B cells and
antibodies. It is a most prestigious list of Nobel Laureats.
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The study of antibodies began in 1890 when E von Behring and S Kitasato
described antibody activity against diphtheria and tetanus toxins. They
proposed the theory of humoral immunity, suggesting that a mediator in
serum (the liquid, noncellular component recovered from coagulated blood)
could react with a foreign antigen. Their ideas influenced P Ehrlich who
eventually formulated his side-chain theory for antibody and antigen
interaction in 1897. He hypothesized that receptors (“side-chains”) on the
surface of cells could bind specifically to toxins — in a “lock-and-key”
interaction — and that this binding reaction would trigger the production of
antibodies.

In the 1920s, M Heidelberger and O Avery described that antigens could be
precipitated by antibodies. The next major advance was in 1940, when L
Pauling confirmed the lock-and-key theory and showed that the interactions
between antibodies and antigens depend more on their shape then on their
chemical composition. In the 1960s, G Edelman discovered that antibodies
are composed of disulfide bond-linked heavy and light chains. Around the
same time, RR Porter characterized different regions of immunoglobulin G
(1gG), namely the antibody-binding region Fab and the antibody tail region Fc.
Together, these scientists deduced the structure and complete amino acid
sequence of IgG, for which they were jointly awarded in 1972 the Nobel Prize
in Physiology or Medicine.

BOX 3 1972 Cellular Cytotoxicity

In 1984 a further Nobel Prize was awarded for antibodies, this time given to
NK Jerne for immune regulatory theories and to G Kéhler and C Milstein for
the invention of the monoclonal antibody production technology.

In 1987, S Tonegawa obtained the Nobel Prize for providing evidence for
somatic gene rearrangements of immunoglobulin genes coding for variable
and constant regions. In 1976, Tonegawa had used Southern blot analysis of
restriction enzyme digested DNA from lymphoid and nonlymphoid cells. He
showed that the immunoglobulin (Ig) variable (v) and constant (c) genes are

distant from each other in the germline genome. In contrast, in DNA from an
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antibody-producing plasmacytoma cell the two genes localized closely
together. They concluded that somatic gene rearrangement, a process
entirely new at the time, must have been responsible for this phenomenon

(8).

Today we know that the antibody repertoire of an individual is generated
through somatic recombination events from a limited set of germline gene
segments. The human heavy chain v region gene is generated by joining of
VH, D and J gene segments. The light chain v region gene (x or A) is generated
by joining of vL and J gene segments. Still further diversification of the
antibody repertoire results from somatic mutation events targeted to the
variable regions. Somatic mutation and selection by antigen allows for further
affinity maturation of antibodies.

The potential heavy chain gene repertoire can be calculated from the
equation: 50 VH x 27 DH x 6 JH = 8.1 x 103. The light chain gene repertoire

consists of about 365 chain combinations. If we consider that each heavy
chain protein could pair with each light chain protein, then the diversity of

the Ig antibody protein repertoire is very large, in the order of 3x10°® possible
combinations.

Since this review addresses not only experts in the field but also lay people,
some basic information will be given about the structure and function of
antibodies. Antibodies are immunoglobulin proteins (Igs), secreted by B
lymphocytes (B-cells) of the adaptive immune system, mostly by
differentiated B-cells called plasma cells. An immunoglobulin G antibody is a
Y-shaped protein consisting of heavy and light chains. Such antibodies are
used by the immune system to neutralize pathogens such as bacteria and
viruses. Each tip of the Y recognizes a unique structure of the harmful agent,
called an antigen. The antigen-binding sites of an antibody (2 for IgG and 5 for
immunoglobulin M (IgM)) can be considered as a lock for a fitting antigen as a
key. The ability of an antibody to communicate with other components of the
immune system is mediated via its tail (Fc) region. The production of
antibodies is the main function of the humoral adaptive immune system.

With regard to function, the main categories of action of antibodies consist
of
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i) neutralization, to render an attack by bacteria or viruses ineffective,

ii) agglutination, in which antibodies glue together foreign cells into clumps
that are attractive targets for phagocytosis,

iii) precipitation, by which antibodies glue together serum-soluble antigens,
forcing them to precipitate out of solution in clumps that are attractive
targets for phagocytosis and

iv) complement activation (fixation) which leads to lysis of foreign cells or
inflammation by chemotactically attracted inflammatory cells.

Medical applications of mabs include disease diagnosis and disease therapy.
For example, in biochemical assays for disease diagnosis, a titer of antibodies
directed against Epstein-Barr virus (EBV) or Lyme disease is estimated from
the blood. If those antibodies are not present, either the person is not
infected or the infection occurred a very long time ago, and the B cells
generating these specific antibodies have naturally decayed.

D. TARGETED MONOCLONAL ANTIBODY THERAPIES
This paragraph, like that on small molecule inhibitors, is based on (9).

Targeted monoclonal antibody (mab) therapy is employed to treat diseases
such as rheumatoid arthritis, multiple sclerosis, psoriasis and many forms of
cancer.

The formula for generic naming of mabs consists of the following:

Name = prefix + subsystem(s) + stem. The prefix is variable. The target of the
subsystem is: -ci(r)- for circulary system, - liim)- for immune system and —t(u)-
for tumor. The stem is either -ximab for chimeric human-mouse, -zumab for
humanized mouse or -mumab for fully human.

Therapeutic mabs target specific antigens found at the cell surface, such as
transmembrane receptors. In some cases, mabs are conjugated to radio-
isotopes or toxins to allow specific delivery of these cytotoxic agents to the
targeted cancer cell.

i) COMPARISON BETWEEN ANTI-RECEPTOR MABs AND TK SMALL MOLECULE

INHIBITORS
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Table 25 shows characteristics of anti-receptor mabs and compares these to
those of tyrosine kinase SMIs. While the mab targets a receptors extracellular
ectodomain, small molecules target the receptors intra-cellular tyrosine
kinase domain. The specificity of a mab is somewhat higher than that of a
SMI. After binding of a mab to its target, the receptor is internalized and only
slowly regenerated.

There is a great difference in pharmacokinetic properties: SMis have
lifetimes in the circulation that are often measured in hours to days, whereas
mabs may persist for weeks in the circulation. As a consequence, SMis have
to be applied daily while mabs may be given once a week. The tissue
distribution of SMIs is more complete than that of the larger mabs.

Mabs can interact with cells of the immune system via their Fc domain thus
generating for instance a mechanism known as antibody-dependent cellular
cytotoxicity (ADCC). SMis lack such properties. With regard to toxicity, SMls
often produce rash, diarrhea and/or pulmonary problems, while mabs can
produce rash and allergy.

ii) THE FIRST APPROVED MAB

Mabs against the epidermal growth factor receptor (EGFR) were the first
immunotherapeutic reagents to be approved for application to cancer
patients. EGFR signals appear to communicate with the oncogene ras. A test
with an EGFR expressing cancer cell line in vitro revealed Ras protein
activation within 5 minutes after addition of the ligand EGF (10).

Blocking mabs competitively inhibit the binding of an activating ligand (e.g.
EGF or TGFQ) to the extracellular domain of EGFR. Such blocking inhibits
receptor autophosphorylation and, in contrast to the tyrosine kinase
inhibitors (TKIs), induce receptor internalization and degradation. Subsequent
downstream signaling events are similar to those described for the TKis
gefinitib and erlotinib.

Trastuzumab (Herceptin), the first approved mab, is directed against HER2
(Table 26). It has activity against HER2+ breast cancer and gastric cancer.
HER2 positivity is defined as 3+ on conventional immunohistochemistry (IHC)
or on gene amplification by fluorescence in situ hybridization (FISH).
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The HER family is composed of four transmembrane tyrosine kinase (TK)
receptors. They include ErbB1 (HER1), ErbB2 (Her2/neu or HER2), ErbB3
(HER3) and ErbB4 (HER4). The HER kinases have six known ligands: epidermal
growth factor (EGF), transforming growth factor alpha (TGF-c1), amphiregulin,
betacellulin, heparin-binding EGF, and epiregulin (11).

The overexpression of HER family kinases correlates with poor prognosis and

decreased survival in several solid tumors (12). Moreover, tumors that
overexpress these TKs often produce their own ligands, such as TGF-q,
leading to the activation of survival pathways via autocrine loops.

There have been 5 randomized trials demonstrating the benefit of
trastuzumab when added to chemotherapy in HER2+ breast cancer. A joint
meta-analysis of two of these trials, including 4045 patients, demonstrated a
48% reduction in the risk of recurrence and a 39% reduction in the risk of
death (13).

iii) EGF RECEPTOR ANTAGONISTS

Carcinomas are common epithelial-derived tumors and the EGFR is an
interesting target not only for mabs but also for development of TKis. The
best-characterized inhibitors of the EGFR TK are the drugs iressa, also known
as gefitinib, and tarceva, also known as erlotinib. The two drugs act by
blocking the ATP-binding site of the EGF receptor-associated kinase.

In principle, these low-molecular weight compounds should be able to
penetrate into all the interstices of a solid tumor, including those where the
far larger antibody molecules may have trouble gaining access. In the first
clinical trials, gefinitib showed partial responses in 10% of patients with Non-
Small-Cell-Lung-Cancer (NSCLC) including stabilization of tumor growth. Later
it was found that such responding patients had tumor cells with mutated
EGFRs affecting their kinase domain. Unfortunately, virtually all of these
successes have been short-lived. Most patients relapsed within 6 to 18
months, having developed a resistance to drug treatment (14).

iv) MABS DIRECTED AGAINST DISTINCT TUMOR TARGETS APPROVED FOR

CANCER THERAPY
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Table 26 lists examples of therapeutic mabs which have meanwhile been
approved for distinct targets and types of cancer. With regard to the targets,
there are the various growth factor receptors, such as those of the HER family
(HER1 and HER2), the receptor for vascular endothelial growth factor
(VEGFR2) and the receptor o chain for PDGF (PDGFRa). Then there is VEGF,
the ligand of the growth factor receptor VEGFR. VEGF is neutralized by the
anti-angiogenic agent Avastin (Bevacizumab).

A variety of targets are expressed at the cell surface of different types of
tumors of the hematopoietic system, such as myelomas, B- or T-cell tumors :
CD52, CD38, CD20 and SLAM7. RANKL is a target of giant cell tumors of the
blood and GD2 is a target of pediatric neuroblastomas.

FDA-approved indications for therapeutic mabs include carcinomas (e.g.
Her2+ breast and gastric cancer, HNSCC, NSCLL, CRC and Ovarian Ca),
sarcomas, neuroblastoma, myeloma and B-or T-cell ymphoma.

v) IMMUNE CHECKPOINT INHIBITORY MABS

Undoubtedly the greatest success with clinical application of mabs in cancer
patients has been in recent years the use of checkpoint inhibitory mabs
(Table 27). This novel class of immunotherapy was first approved in 2011.
These mabs are directed against targets of the immune system, in particular
against regulatory target molecules on T-cells.

Immune checkpoint receptors are crucial molecules for the fine-tuning of
immune responses (15,16). Checkpoint receptors on T cells such as CTLA-4 or
PD-1 mediate negative, dampening signals to T cells to avoid the destructive
effects of an excessive inflammatory response and autoimmune reactivity.
Tumors use several mechanisms to avoid elimination by the immune system.
One involves hijacking checkpoint pathways. Checkpoint blockade therapy
utilizes mabs to release the brakes from suppressed T cells, allowing them to
be activated and to recover their antitumor activity (17,18).

Table 27 lists 4 checkpoint inhibitory mabs, their target of action and the
FDA-approved clinical indications. It all started with metastatic melanoma.
Single-agent application of anti-CTLA-4 (18,19) and anti-PD1 was surprisingly
effective and caused an improvement in OS. Such improvement was never

seen before in this disease. Meanwhile an increasing number of clinical
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applications appears possible with benefits of an increasing number of
patients. Two further mabs are directed against the ligand of the receptor PD-
1, namely PD-L1. These mabs have been approved for application in patients
with urothelial carcinoma and with NSCLC.

The mabs from Table 27 have shown impressive clinical efficacy in advanced

melanoma, metastatic kidney cancer and NSCLC - all malignancies that
frequently cause brain metastases. Several clinical trials of checkpoint
blockade have also been conducted in hematological malignancies. The
results of PD-1 blockade in Hodgkin lymphoma are remarkable (19-21).

Important for the clinician is the following: About 100 trials were evaluated
to assess the safety and efficacy of the approved checkpoint inhibitors of
Table 25. The results can be summarized as follows: Ipilimumab and
nivolumab, but not pembrolizumab, showed an OS advantage over
chemotherapy first line in unresectable/metastatic melanoma. A therapy
combining ipilimumab and nivolumab revealed a further increase of efficacy
in advanced melanoma (22). It had been shown before that such a
combination in murine B16 melanoma leads to expansion of tumor-
infiltrating lymphocytes (TILs) and to a reduction of regulatory T (Treg) cells
and suppressive myeloid cells (23). Nivolumab had an OS advantage versus
chemotherapy in second-line NSCLC.

New emerging mabs have great potential for the systemic control of
epithelial cancers such as lung cancer. Reported phase | trials of nivolumab,
MK-3475, MEDI4736, and MPDL3280A, are demonstrating durable overall
radiological response rates in the range of 20-25% in lung cancer.

Atezolizumab, a mab against PD-L1 or CD274 antigen, has been approved by
the FDA for a variety of haematological malignancies and solid tumors
(24,25). In combination with the anti-VEGF mab bevacizumab this anti-PD-L1
reagent was shown to enhance antigen-specific T-cell migration in metastatic
renal cell carcinoma. It also showed durable activity and good tolerability in
patients with locally advanced urothelial carcinoma. Durvalumab is a fully
human mab that blocks PD-L1 binding to its receptors PD-1 and CD80 (26).
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Dual checkpoint blockade strategies, such as those combining anti-CTLA-4,
anti-LAG-3, or anti-KIR, are being tested to increase the proportion and
durability of tumor responses.

With targeted immunotherapies, new mechanisms of action require
adaptations in study design and statistical analysis, as well as the need for
refining clinical trial endpoints. In the Brookings Conference on Clinical Cancer
Research held in Washington, DC, in November 2013, several intermediate
clinical endpoints, including milestone OS, were proposed for the evaluation
of cancer immunotherapies. These are introduced to take into account the
possibility of delayed treatment effects and to better characterize the clinical
activity profile.

Predictive biomarkers are also important to identify patients accurately
who will benefit from checkpoint blockade. A first identified biomarker is
soluble IL-2 receptor (sCD25) (27). Other biomarkers might include tumor-
infiltrating immune cells such as TiLs and molecules such as PD-L1 in the
tumor microenvironment. Also, gene analysis such as mutational landscape
and mismatch repair deficiency, could become useful (28,29).

Certain types of cancer (e.g. colorectal carcinoma (CRC)) do not seem to
respond to immune checkpoint blocking antibodies (30). Means to sensitize
tumors to checkpoint blocking therapy include immunogenic drugs,
immunogenic chemotherapy (31) and gut microbiota (32).

We expect many new patents regarding immune checkpoint inhibitors and
patent-related biomarkers. A patient eligible to a treatment with an immune
checkpoint inhibitor will have tremendous commercial value. A patent review
for the years 2010 — 2015 presented a selection of international patent
applications. These included PD-1/PD-L1, CTLA-4, IDO, TIM3, LAG3, TIGIT,
BTLA, VISTA, ICOS, KIRs and CD39 (33).

Meanwhile, over a dozen T cell immune checkpoints and an additional
dozen or more co-stimulatory receptors have been described. The challenge
for the future, therefore, is to identify the most advantageous combinations.
This should be based on knowledge of their underlying biology and on
preclinical studies in murine tumor models.

vi) SIDE EFFECTS WITH IMMUNE CHECKPOINT INHIBITORY MABS
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Clinical effects of therapies have always to be compared with their side
effects. This is not different with immunotherapy. The side effects of blocking
the immune systems natural inhibitory mechanisms have manifested
clinically as diarrhea, rash, and hepatitis. The symptoms of side effects caused
by such new reagents have been termed “immune-related adverse events
(irAEs)” (34).

Table 28 lists the major effects. Of particular significance are, apart from
general fatigue, the endocrine effects : hypophysitis, thyroid disease and
adrenal insufficiency. Acute interstitial nephritis is possibly related to the
presence of autoreactive clonal T cells. Renal monitoring every 2 weeks for 3-
6 months has been recommended (34-37).

Although steroids can be used to treat these irAEs, the associated
immunosuppression may compromise the antitumor response.

vii) MABS FOR RESEARCH APPLICATIONS AND IMPROVED DIAGNOSTICS

Because of their high specificity, antibodies have not only contributed to
progress in medicine as therapeutics but also in research and diagnostics.
Specific antibodies are produced by injecting an antigen into a laboratory
animal such as mouse, rat, or rabbit. Serum isolated from blood of these
animals then contains polyclonal antibodies, i.e. multiple antibodies that bind
to the same antigen.

To obtain antibody that is specific for a single epitope of an antigen,
antibody secreting B lymphocytes are isolated from such animals and
immortalized by fusing them with a cancer cell line. The fused cells are called
hybridomas. These can grow in culture continually and secrete antibody into
culture supernatants. Single hybridoma cells are then isolated by dilution
cloning to generate cell clones that all produce the same antibody which are
called monoclonal antibodies.

It is possible to isolate from such hybridomas or from immune B-cells the
variable Ig genes to produce single-chain Fv (scFv) fusion proteins with
antibody binding specificity. We used this technology to produce scFv
proteins binding to the HN protein of Newcastle disease virus (NDV), and also
scFv fusion proteins binding to CD3, CD28 or CD25 of T-cells. Further genetic
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engineering allowed to construct from these reagents bispecific and
trispecific fusion proteins (see Chapter V, G).

In research, purified mabs are used for many applications, for instance to
identify and locate intracellular and extracellular proteins. Mabs are also
used in flow cytometry to differentiate cell types by the proteins they
express. Different types of cells express different cell surface antigens which
are defined by cluster of differentiation (CD) molecules.

Mabs are also used for immunoprecipitation to separate proteins and
anything bound to them (co-immunoprecipitation) in a cell lysate. In Western
blots, mabs are used to identify proteins separated by electrophoresis. In
immunohistochemistry or immunofluorescence, mabs are used to examine
protein expression in tissue sections or to locate proteins within cells with the
help of fluorescence microscopy.

Of great diagnostic value are also ELISA and ELISPOT techniques, in which
proteins can be detected and quantified with the help of differently labeled
mabs.

E. T-CELLS AND DCs

Table 29 lists milestones from immunology research relating to T cells and
Dendritic cells (DCs).

i) HUMORAL VERSUS CELLULAR ANTI-TUMOR IMMUNITY

As antibodies do not efficiently penetrate tissues, including tumor tissue,
their ability to prevent tumor growth remains limited. The mab herceptin,
which is directed against breast cancer, and has proven successful in patients,
is probably a rather exceptional case. In case of single-cell tumors, such as
lymphomas, the situation is different. These tumors are more accessible to
antibodies than solid tumors. This explains the clinical efficacy of a variety of
mabs such as Rituximab (anti-CD20), which eliminate B-cell ymphoma and B -
cells in an Fc receptor dependent fashion.

T cells, in contrast, have the ability to migrate through tissues and to
infiltrate solid tumor tissue. The key anti-tumor effector cells are cytotoxic T
lymphocytes (CTL), which can induce direct lysis of tumor cells. In addition, T

helper cells (Th) locally produce cytokines in the tumor mass, creating a pro-
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inflammatory milieu, facilitating elimination of tumor cells by recruitment
and activation of CTLs and nonspecific cells such as macrophages or
eosinophils.

The polarization of the T cell mediated immune response towards Th 1 (T-T
cooperation) or Th2 (T-B cooperation) provides the basis for the dichotomy
between humoral and cellular immunity. CD28, an important T cell co-
receptor for co-stimulation, was found to mediate adhesion with B-cells by
interacting with the activation antigen B7 (CD80/CD86)(38).

The cellular and molecular details of this polarization of immune responses
have been elucidated in the last decades. Of importance in this respect are
signals which DCs and other innate immune cells receive from membrane-
associated Toll-like receptors (TLRs) and from cytoplasmic RIG-I-like receptors
(RLRs). Agonists of such receptors often represent foreign viral or bacterial
nucleic acids or oligonucleotides. Such agents lead to immunostimulation and
are therefore developed for polarization of DCs towards DC1 (inducing Thl
immune responses) and generally usefull for cancer therapy (39).

A specific DC subset, characterized by expression of CD103, plays an
important role in anticancer immunosurveillance. It is dependent on the
transcription factors Batf3 and Irf8 and produces interleukin-12 (40).

ii) MOLECULAR NATURE OF THE T CELL RECEPTOR

As with B-cells and their antigen-specific receptors (BCRs) which are based
on antibodies, it is of interest to follow the history of the discovery of T-cells
and that of their antigen-specific receptors (TCRs).

The differential effects of neonatal bursectomy and thymectomy in the
chicken on subsequent humoral and cellular responses paved the way for
recognition of two separate lymphocyte lineages within the adaptive
immunity system, the B-cell and the T-cell lineage. The emergence of a
thymus in the teleost (bony fishes), amphibians, reptiles, birds and mammals
was associated with major histocompatibility (MHC) molecules, cell-mediated
immunity, cytotoxic T cells and allograft rejection.
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In the 1970s, the nature of the TCR was for a long time an enigma. While the
BCR was known to be a membrane associated Ig molecule with variability in
the binding sites due to their antibody nature, T-cells were known only to
recognize antigen in a different way.

As a result of my PhD thesis, the carrier-specificity of the secondary immune
response to a hapten-carrier complex could be explained by the interaction of
carrier-protein specific T- cells and hapten-specific B-cells. This meant in
general that more than one antigenic determinant was required for
immunogenicity of an antigen (41). Cell-to-cell interaction and
communication was at that time unheard of in medical circles and therefore
doubted.

A specific function of thymus-derived lymphocytes (T-cells) in the
secondary humoral immune response in mice was described in 1969 by R B
Taylor (42) and in 1970 by M Raff (43). Gradually it appeared that T cells
recognize linear stretches of amino acids while antibodies recognize three-
dimensional structures of proteins. Several approaches to identify the TCR via
immunochemical studies of the precipitated protein, however, failed.

In contrast to B-cells, T-cells cannot recognize antigen directly. The antigens
that T cells recognize are small peptides from proteins that bind to major
histocompatibility (MHC) molecules. MHC molecules act as receptors for T
cell antigens and function in particular on professional antigen-presenting
cells (APCs) such as dendritic cells (DCs). Each vertebrate species expresses
MHC molecules. These were identified originally through their ability to
evoke very powerful transplantation rejection. It was the important discovery
by R Zinkernagel and P Doherty, who, in 1974, described the phenomenon of
MHC restriction by CTLs (44).

Finally, it was the group of T Mak which solved the problem by gene
technology. After a long and often frustrating search, the discovery of the
genes encoding the mouse and the human TCR was published in 1984 in
Nature (45). It still needed much further molecular structural research to
unravel the secrets, how the TCR sees peptide antigen and MHC molecules in
three dimensions (46-52).
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The antigen receptor of MHC-restricted CD4+ helper T cells and CD8+ CTLs
is a heterodimer consisting of two transmembrane polypeptide chains,
designated TCR o and TCR B, covalently linked to each other by a disulfide
bridge. The V regions of the TCR o and B chains contain short stretches of
amino acids in which the variability between different TCRs is concentrated.
These form the hypervariable or complementarity-determining regions
(CDRs). Three CDRs in the o chain are juxtaposed to three similar regions in
the B chain to form the part of the TCR that specifically recognizes peptide-
MHC (pMHC) complexes: the V domain. A and R polypeptide chains contain
each one variable (V) and one constant (C) domain.

Each TCR chain, like Ig heavy and light chains, is encoded by multiple gene
segments that undergo somatic rearrangements during the maturation of T
lymphocytes in the thymus. Associated signaling molecules are CD3 and

€. The affinity for antigen (Kd) is in the range of 10°to 107. For comparison,
the affinity of antibodies for antigen is in the range of 107 to 1012,

TCR o and B chains can be isolated from a T cell clone of defined peptide and
MHC specificity. Upon transfection into other T cells, these genes confer both
the peptide specificity and the MHC restriction of the original clone. Neither
TCR chain alone is adequate for providing specific recognition of p-MHC
complexes.

The low affinity of specific antigen binding to the TCR is likely the reason
why adhesion molecules are needed to stabilize the binding of T cells to APCs
during cognate interactions, thus allowing biological responses to be
initiated. T cells and APCs interact through pairs of accessory molecules: MHC
1I-CD4, MHC I-CD8, VCAM-1 - VLA-4, ICAM-1 - LFA-1, LFA-3 - CD2, B7-CD28,
B7-CTLA-4. Interactions of B7-CD28 are stimulatory while interactions of B7-
CTLA-4 are inhibitory.

Activation of T cells requires two signals. One signal only (signal 1) can
produce unresponsiveness (anergy) or death via apoptosis. Signal 1 is
provided by the low affinity cognate TCR-pMHC interaction between T cells
and APCs. Signal 2 is mediated through ligation of CD28 and B7 (CD80/CD86)
adhesion molecules between T cells and APCs .
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iii) COGNATE INTERACTION BETWEEN T CELLS AND APCs AND SIGNALING
THROUGH THE TCR REQUIRES THE FORMATION OF AN IMMUNOLOGICAL
SYNAPSE

Signaling through the TCR complex appears to require prolonged or
repeated engagement of p-MHC complexes. This is promoted by stable
adhesion between T cells and APCs. The TCR and accessory molecules in the T
cell plasma membrane move coordinately with their ligands in the APC
membrane to form a transient supramolecular structure called the
immunological synapse (47). The formation of this synapse regulates TCR-
mediated signal transduction. CD4 and CD8 molecules are T-cell proteins that
bind to nonpolymorphic regions of MHC molecules and facilitate signaling by
the TCR complex during CD4+ or CD8+ T cell activation, respectively.

Synapses have first been detected in the nervous system. There they serve
for transmission of electrical signals between cells within the nervous system
or between neurons and muscle cells. The adaptive immune system
apparently made use of synapses for transmission of chemical signals for
information transfer between its cells. In contrast to the neuronal system, the
immune system is characterized by cells moving throughout all body tissues
and organs for immune surveillance.

BOX 4 1973 Research on viral superantigens in London, England

BOX5 1973 MHC restriction of CTL

iv) COMPARISON BETWEEN SPECIFIC B-CELL AND T-CELL RESPONSES TO
ANTIGEN

Both, B- and T-lymphocytes use randomly generated membrane receptors
(BCRs and TCRs) for specific recognition of antigens. The receptors are made
up of constant and variable gene domains. The high variability of the antigen

binding sites is generated by somatic rearrangement of the genes coding for
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the variable domains. During B-cell maturation in the bone marrow, a V(D))
recombinase becomes active to produce homologous recombinations in
immunoglobulin v genes. During T-cell maturation in the thymus, the
recombinase activating genes RAG-1 and RAG-2 (52) become active to
produce homologous recombinations in the v gene segments of the TCR o
and f8 chains. These recombinase enzymes and activating genes in
lymphocytes of the B- and T-cell lineages allow the creation of a huge
repertoire of mature B- or T-cell clones with different antigen receptor
specificities. Sophisticated mechanisms of positive and negative selection in
the bone marrow (for B-cells) and thymus (for T-cells) make sure that only
clones with a correct and functional receptor are allowed to leave the
respective lymphoid tissue into the periphery. Cells that react to self -
antigens (all antigens from autologous healthy tissues) are eliminated in bone
marrow or thymus by negative selection.

Contact of a mature B- or T-cell with a fitting antigen in a secondary
lymphoid organ such as the lymph node or spleen leads to its clonal selection
and expansion.

BOX 6 1976 Head of Division Cellular Immunology at DKFZ, Heidelberg

BOX 7 1980 Chamber music in Paris

v) MOLECULAR NATURE OF A HUMAN TUMOR ASSOCIATED ANTIGEN
RECOGNIZED BY A TCR OF A CTL

The existence of tumor-associated antigens (TAAs) was deduced originally
from studies of specific immune rejection of transplanted experimental
mouse tumor lines in pre-immunized syngeneic mice. While virus-induced
tumors express group (virus)-specific tumor rejection antigens, those of
chemically-induced tumors express TAAs that are unique for each tumor line.
Whether naturally occurring animal tumors also expressed TAAs and whether

106



this was the case also for human tumors was not known at the time and thus
was hotly disputed in the 1970s and 1980s.

To identify the molecular nature of a TAA required the new techniques of
gene technology, just like in the case of the TCR. It was the group of T Boon in
Brussels (Belgium) who in 1991 described for the first time the molecular
nature of a TAA. The antigen was expressed on a human melanoma cell line
and could be recognized in vitro by specific CTLs. The sophisticated new
technology involved multiple gene transfers. Also, multiple CTL assays had to
be established, before this group could identify a gene coding for an HLA-A1
restricted peptide that was not expressed in a panel of normal tissues (53). In
the following decades many more human TAAs were discovered. They also
consist of peptide-MHC complexes.

The major histocompatibility complex (MHC) represents a genetic region
encoding molecules involved in antigen presentation to T cells. Class | MHC
molecules are present on virtually all nucleated cells. They are encoded by H-
2K, -D and -L loci in mice and by HLA-A, -B and —C in man. Class Il MHC
molecules are expressed on antigen-presenting cells (primarily dendritic cells,
macrophages and B cells). They are encoded by H-2A and —E in mice and by
HLA-DR, -DQ and —=DP in man.

The MHC is highly polymorphic. Each gene locus comes in a variety of allelic
forms. Allelic differences in MHC are associated with the most intense graft
rejection within a species.

vi) HUMAN TUMOR-ASSOCIATED ANTIGENS

More than 100 tumor-associated T-cell antigens have meanwhile been
characterized. With regard to their identification, characterization and clinical
applications we refer to a recent book (54) and to Chapters 53 and 54 of the
textbook “The Molecular Basis of Cancer” (55).

Only a short summary can be given here: Every tumor may contain a few
hundreds of mutations in coding regions of the genome. In addition,
deletions, amplifications, and chromosomal rearrangements can result in new
genetic sequences. The vast majority of these mutations occur in intracellular
proteins. Therefore, such “neoantigens” would not be readily recognized and
targeted by antibodies. However, thanks to the MHC presentation system for
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T-cell recognition, peptides derived from all cellular proteins and fitting into
respective MHC peptide binding grooves, are transported to the cell surface.
There they can be recognized by T-cells with TCR specificity for such p-MHC
complexes. It has been estimated that roughly one third of the mutations
identified from genome sequencing of breast and colon cancers are capable
of binding to common HLA allels.

1. One category of human TAAs arises from common oncogene/tumor
suppressor gene mutation. Such mutations can be individually specific or can
be shared. Antigen-specific immunotherapies targeting such TAAs must
therefore either be patient-specific or focused on those common mutations.
Examples of the latter are the mutations Kras G12A (colon and pancreatic
cancer), Braf V599E (melanoma) and P53 G249T (hepatoma).

2. Cancer-testis antigens represent examples of widely shared tumor
antigens whose expression is restricted to tumors. Many of these
epigenetically altered genes are expressed selectively in the testis of males.
The most commonly explored antigens in human vaccine trials are Mage3
and NY-ESO-1. They demonstrate a broad tumor distribution. A major
drawback of such antigen targets is that none of these appears necessary for
tumor growth or survival.

3. Other human TAAs are also upregulated via epigenetic mechanisms, for
example CEA (gastrointestinal cancers), WT-1 (Wilm’s tumor, leukemias,
lymphomas), Mesothelin (pancreatic, ovarian cancer or mesothelioma) and
Her2/Neu (Breast, ovarian cancer).

4. Tissue-specific antigens expressed by tumors represent another category of
shared TAAs. They have been popular targets of cancer vaccination. Examples
are Tyrosinase (melanoma), MART1/Melan A (melanoma), gp100
(melanoma), PSA (prostate), PAP (prostate).

5. Another important category of tumor antigens encompasses viral antigens
for virus-associated cancers or pre-cancerous lesions. Examples are HPV E6,E7
(cervical cancer) and EBV EBNA-1, LMP1,2 (Hodgkins lymphoma,
nasopharyngeal cancer).
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vii) T-CELL CO-STIMULATION AND T-CELL TOLERANCE

CD28 is the principal costimulatory receptor for delivering second signals
for T-cell activation. CD28 is a receptor on T cells that binds to B7
costimulatory molecules expressed on professional APCs. Cross-linking of
CD28 chains in the T-cell membrane delivers signals ( signal 2) that are
required for full T cell activation, in addition to signals generated by cross-
linked TCR chains (signal 1). The delivery of signal 1 only to a naive T cell upon
cognate interaction with an APC, for instance a TAA-expressing tumor cell, is
not only insufficient for T cell activation, but it induces T-cell tolerance.

A second receptor for B7, called CTLA-4, is induced after T cell activation
and functions to inhibit the T cell response. Some members of the CD28
family, such as CD28 itself and ICOS (inducible costimulatory) provide
activating signals to T-cells. The CD2 family of receptors includes proteins
such as CD2 and SLAM that provide additional activating signals to T cells.
Other T-cell receptors, such as CTLA-4 and PD-1, provide inhibitory signals.

The CD3 and { proteins are noncovalently associated with the TCR o,R
heterodimer. When the TCR recognizes antigen, these associated proteins link
antigen recognition by the TCR to the biochemical events that lead to T cell
activation. These events involve Immunoreceptor Tyrosine-based Activation
Motifs (ITAMs) of the CD3 7,3, and € proteins and of the { chain. These ITAMS
are phosphorylated shortly after antigen recognition by Src family kinases
such as Lck or Fyn. Lck associates with the cytoplasmic tail of CD4 and CDS,
and Fyn is physically linked to CD3. The phosphor-tyrosines in the ITAMs
become docking sites for a tyrosine kinase with tandem Src homology 2 (SH2)
domains. This kinase, called ZAP-70, is recruited to the { chain and triggers
signal transduction pathways that ultimately lead to changes in gene
expression in the T-cells.

There also exist within cells of the immune system Immunoreceptor
Tyrosine-based inhibition (ITIMs) motifs. These are six-amino acid motifs
found in the cytoplasmic tails of various inhibitory receptors, including
FcyRIIB on B-cells and Killer cell Ig-like Receptors (KIR) on NK-cells.

CD4-mediated T-cell help in the activation of CD8+ T-cells and B-cells,
through linked-recognition of antigenic determinants, is a long-standing
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concept fundamental to our understanding of immunity (presence of help)
versus tolerance (lack of help). The important question is how to overcome
immune tolerance to tumor cells (with shared TAAs as self antigens) without
causing unwanted autoimmune pathology. The answer requires detailed
understanding of central and peripheral tolerance mechanisms.

Progress in the field of T-cell tolerance has been made in the last 2 decades
among others by B Kyewsky and L Klein. In 2006 they described a central role
for central tolerance (57). The autoimmune regulator gene aire was found to
regulate the expression of tissue-specific antigens (TSAs) in medullary thymic
epithelial cells (mTECs). These play a critical role in the negative selection of
autoreactive T cells and in the generation of regulatory T cells. Aire was
initially identified as the gene causing multiorgan system autoimmunity in
humans. Deletion of this gene in mice also resulted in organ-specific
autoimmunity.

Regulatory T cells (Tregs) are crucial mediators of self-tolerance in the
periphery. They differentiate in the thymus, where interactions with thymus-
resident antigen-presenting cells, an instructive cytokine milieu, and
stimulation of the TCR lead to selection into the Treg lineage and the
induction of Foxp3 gene expression. Once mature, Treg cells leave the thymus
and migrate into the periphery (58).

Apart from central tolerance there are also tolerance mechanisms in the
periphery. For instance, CD4+ T cell tolerance has been identified to corrupt
cancer immunotherapy (59). Also, it has been described, how to help helper T
-cells (and B-cells) to become intolerant of tumors: The authors demonstrate
that provision of linked foreign helper epitopes, such as influenza
hemagglutinin, substantially enhances both CD8+ T-cell and B-cell responses
to tumor self-antigens without causing any overt autoimmune pathology (60).

In 2011, RM Steinman, B Beutler and J Hoffmann were granted the Nobel
Prize for Physiology or Medicine for their discovery of DCs, Toll-like receptors
(TLRs) and innate immunity, respectively. How important these three topics
are for the understanding of immune mechanisms and for designing new
immunotherapeutic concepts to fight cancer will become clear in the
following chapters. Their work provides a rational basis for the concept of
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multimodal immunotherapy developed at the 10ZK in Cologne (Germany)
(see below).

To finish with Table 29, the successful introduction of the immune
checkpoint therapy into the clinic in recent years by J Allison and colleagues
has already been delt with in the chapter about mabs.

F. MILESTONES OF CANCER IMMUNOTHERAPY

Table 30 lists milestones of cancer immunotherapy, starting from 1890 with
Coley’s Toxin and ending 2016 with the FDA approval of T-VEC. It shows
periods of quiescence as well as periods of rapid activity. The list involves
discoveries from innate immunity and adaptive immunity, from B-cell and
from T-cell immunity.

Since we focus here on T cells, we will summarize first developments in
adoptive T-cell therapy. These will be divided into therapies with native T
cells and those involving gene-modified cells such as CAR T cells.

i) ADOPTIVE T-CELL THERAPY

The field of adoptive T-cell therapy (ACT) has emerged from principles of

basic immunology to paradigm-shifting clinical immunotherapy. Several
adoptive T-cell therapy strategies have provided clinical benefit to cancer
patients (61,62,63). T-cell therapy may rely on T lymphocytes harvested
directly from the patient (autologous approach) or from healthy donors
(allogeneic approach).

a) allogeneic GvL

In hematological malignancies, allogeneic T cells, infused with allogeneic
hematopoietic stem cell transplantation (HSCT), represents the treatment of
choice. A consistent fraction of donor-derived T cells can recognize either
patient-specific HLA molecules (in the case of haploidentical, or half-matched,
transplantation) or patient-specific so-called minor histocompatibility
antigens (in the case of fully HLA-matched donors). Donor lymphocyte
infusion (DLI) following HSCT can promot graft-versus-leukemia (GvlL) effects
and disease-free survival. These effects are largely due to the immunological
recognition of the tumor by allogeneic T cells (64).
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With regard to solid tumors, the usefulness of allogeneic HSCT remains to be
fully exploited. Early studies had to be halted because of overt toxicity to the
recipient, and limited anti-tumor effects. In addition to eliciting potent graft-
versus-tumor (GvT) activity, alloreactive T cells create a risk of precipitating
life-threatening Graft-versus-Host (GvH) disease. Less intense preconditioning
regimens, pharmacological prophylaxis of GvHD with immuno-suppressive
drugs, depletion of donor T cells, and/or immunization with tumor-directed
vaccines might favor GvT and limit GVHD (65,66).

The specificity and efficacy of allogeneic GvT could be increased by
employing tumor-reactive memory T cells (MTCs) rather than naive T cells.
The problem, however, exists, how to generate these from the donor. In man,
donor pre-immunization against the tumor of the host, is not as feasible. This
method functioned perfectly well in experimental animals with genetically
defined strains. Ex vivo stimulation of donor T cells with host tumor lysate-
pulsed DCs as APCs would be an alternative. Below, we provide examples of
allogeneic GvL activity of MTCs from the bone marrow of pre-immunized
donor mice. Also, we will elude to experiments with MTCs from the bone
marrow of cancer patients.

MTCs have many properties that are superior to naive T cells for therapeutic
purposes. The forkhead box O (FOXO) transcription factor family — which is
central to the integration of growth factor signaling, oxidative stress and
inflammation — provides connections between physical well being and the
form and magnitude of an immune response (67). FOXO1 has an intrinsic role
in establishing the post-effector memory program in T cells that is essential
for forming long-lived memory cells capable of immune reactivation (68).

b) autologous TILs

Recent strategies focus on autologous T cells to treat non-hematological
tumors. The group of S Rosenberg pioneered the isolation and expansion of
TiLs. Patient-derived T cells were grown and selected in culture and then
infused back for the treatment of advanced melanoma (69). Further studies
improved the therapeutic potential of TILs by defined culture conditions, by
patient preconditioning strategies, and by the provision of exogenous IL-2.
Objective tumor regressions in 50-70% of patients with metastatic melanoma
could be observed, with some patients achieving durable complete
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regressions beyond 10 years (70). TILs could be recovered from several
tumors, including renal carcinoma, ovarian, colorectal and breast cancer.
However, technical difficulties in obtaining sufficient numbers of cells have so
far limited exploitation of this strategy.

c) Suicide gene adoptive T-cell therapy

Genetic engineering of T cells with “suicide genes” represents one of the first
clinical applications of the gene transfer technology in humans. Suicide gene
therapy in HSCT aims at providing therapeutic GvT activity of donor T cells
while managing unwanted GVHD. This is done by eliminating the alloreactive
cells expressing a suicide gene with a specific prodrug (ganciclovir). The
prodrug is activated only by the suicide gene product (e.g. HSV-TK) and kills
selectively the donor T cells. In different clinical trials, TK suicide gene therapy
proved to be safe and feasible, allowing to control acute and chronic GVHD,
even in the challenging field of HLA-mismatched transplantation (71).

d) TCR transgenic T cells

A new window of opportunity for cancer immunotherapy has arisen in
recent years by advances in gene transfer technology and in cellular
immunology. Details can be found in an excellent review (72).

These techniques allow to select the most appropriate target antigen
and/or antigen-specific TCR (73). In addition, T cells can be transfected with
Chimeric Antigen-specific Receptors (CARs). Such CARs consist of an
extracellular antibody binding site fused to an intracellular TCR signal
transducing chain (74). TCRs and CARs confer to T cells the ability to recognize
cells expressing a given TAA or stromal antigen and to kill such cells via HLA-
dependent TCR or HLA-independent CAR mechanisms.

One clinical study involved targeting, by TCR transfer, the cancer germline
antigen NY-ESO-1. In 38 patients this approach proved to have clear clinical
effects without demonstrable toxicity (75). TCR targeted human central
memory T cells were shown to possess superior capacity for adoptive
immunotherapy than CD8+ T cells (76). Phase | studies with central memory-
derived CAR T-cells demonstrated safety and feasibility following autologous
HSCT in patients with B-cell NHL (77).
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New techniques in this rapidly developing field are constantly being
developed. One new technique allows high-throughput identification of
antigen-specific TCRs by TCR gene capture (78). This might open the
possibility to exploit a broad, tumor-reactive repertoire of TCRs. Another
technique allows enhanced-affinity CDR3 variants to bind to pMHC dimers
with enhanced equilibrium kinetics.

Artificial zinc-finger nucleases have been exploited to generate human T

cells with disrupted endogenous TCR genes. These cells can then be
transduced with a TCR specific for a human TAA without the risk of
production of mixed TCR dimers. Such TCR-edited T cells with specificity for
the Wilms tumor 1 (WT1) antigen were superior in transgenic TCR expression,
because of lack of competition with endogenous TCR. They also showed
increased anti-tumor reactivity (79).

Elimination of endogenous o,8 TCR can be introduced to prevent GvH
reactivity without compromising CAR-dependent effector functions. This
technology might establish a more universally applicable immunotherapy
platform for the treatment of B-lineage malignancies (80). Recent gene-
editing tools, such as transcription activator-like effector nucleases and
clustered regularly interspaced palindromic repeats, provide a platform to
delete endogenous TCR and HLA genes. This interesting approach aims at
removing alloreactivity and decreasing immunogenicity of third-party T cells
(81,82).

e) CAR transgenic T cells

Automated manufacturing of transgenic T cells for clinical application has
been made possible by the CliniMACS Prodigy (Miltenyi Biotec) (83).

A chimeric antigen-specific receptor (CAR) consists of several modules: i) a
single-chain Fv (scFv) binding domain, ii) a bridge domain and iii) a
transmembrane and signal transmitting domain (CD3 zeta). A second
generation CAR uses a further costimulatory domain (e.g. CD28) fused to the
domain under iii). A third generation CAR uses two costimulatory domains
(e.g. CD28 and OX40) attached to CD3 zeta. A CAR of the 4" generation is
called TRUCK because it will release a transgenic protein (e.g. a cytokine)
upon contact of the CAR with its target (84).
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The advantage of CARs over recombinant TCRs is that CARs recognize cell
surface molecules independently of HLA expression. CARs are monomeric
receptors and should not pose the risk of unexpected specificities.

The promise of this approach is highlighted by the recent success of CAR T
cells specific for CD19 antigen, expressed for instance by ALL, CLL, and NHL
(85). Complete remissions were seen in patients with refractory lymphoid
malignancies for which several lines of therapy had previously failed (86).

Nevertheless, toxicity was often observed: a large proportion of patients
experienced an acute cytokine-release syndrome (CRS), likely due to acute
release of IL-6 and IFN-y, in most cases manageable by an 1-6 receptor
blocking antibody (Tocilizumab) (87).

The main drawback of CD19-redirected CAR T cells is that these cells cannot
discriminate between healthy and transformed CD19+ cells. A suicide
gene/prodrug approach, as discussed above, might solve this complication.
This can be combined with imaging of the T cells by PET (88).

Another example of innovation are genetically modified T cells expressing T-
cell engager (ENG) molecules (BITES). CD19-ENG T cells express secretable
CD19-specific BITES redirecting and activating bystander T cells to tumor cells
(89).

The CRISPR/Cas9 technique, introduced in 2012, is a simpler and more
efficient method of editing genes than previous methods. The acronym
stands for “Clustered Regularly Interspaced Short Palindromic Repeats” (90-
92).

CAR T cell therapy for solid tumors is a challenge (93). CAR T cells engineered
to express heparanase (Hpa) is an attempt in this direction. Such modified T
cells were shown to promote tumor infiltration and antitumor activity (94).
Another enzyme, catalase, coexpressed by CAR T cells was reported to
protect the T cells as well as bystander cells from oxidative stress-induced
loss of antitumor activity (95). In a murine tumor model, efficacy of CAR T-cell
therapy in large tumors was shown to rely on a combination of antigen-
independent stroma destruction and antigen-specific tumor cell targeting
(96). The use of biopolymers codelivering engineered T cells and stimulator of
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IFN gene (STING) agonists could eliminate heterogeneous tumors in
orthotopic mouse models of pancreatic cancer and melanoma (97).

Some efficacy of CEA CAR-T cell therapy was reported for metastatic
colorectal cancers (98). Also, regression of glioblastoma was reported after
CAR T-cell therapy (99).

CAR T cells are being developed also to target cancer driver gene products.
Examples of such driver gene products are

i) epidermal growth factor receptor variant lll (EGFRvlIl) (100),

ii) CD44v6, the variant of hyaluronate receptor CD44 expressed in AML and
MM and

iii) tyrosine kinase receptor gene ROR1 (101).

Apart from o,B T cells, also other types of cells such as ¥,d T cells, cytokine-
induced killer (CIK) cells and NK cells are being explored as carriers for CAR
mediated therapy (102,103).

G. MY MAIJOR RESEARCH TOPICS 1976 — 2000

It is breath-taking to observe the recent advancements in T cell immunology
and clinical translational research. Of course, this is driven, as with the
development of mabs, not only by research scientists but also by competition
between big pharma companies. Anyway, it is re-assuring to see for
someone, like me. | was convinced from the beginning that T cell mediated
anti-cancer immunity is of great importance for improvement of cancer
therapy.

Let us now go back in time for only a few decades. When | started in
Heidelberg in 1976, research on cancer metastasis or on cancer
immunotherapy did simply not exist. These topics were considered like a
black box. Cell biology was just becoming a so-called “hard-core” science
while tumor immunology was considered as “weak” science. Whether or not
a research topic into which you may be driven by intuition may one day
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become important can often only be judged in retrospective. This is
particularly true for areas as complex as applied cancer research.

In new research areas it is important to start with concepts or hypotheses.
Whether these then hold true can often be determined not after years (a
time period important for public or private investors) but only after decades.
Peer-reviewing is a well established procedure in science. The time periods
for judgement, however, become increasingly shorter. Here | make a plea to
peer-reviewers to have a more historic view: who was right with predictions
over time and who not ?

Table 31 lists my major research topics from 1976 to 2017. In this Chapter
we will deal with the topics from 1976 to 2000. The next Chapter (V), devoted
to oncolytic virustherapy, will deal with my research topics from 2000
onwards.

i) IMMUNE RESPONSES AGAINST METASTASIS

In 1976, a major research question for my Division of “Cellular Inmunology”
at the German Cancer Research Center in Heidelberg was the following:

Is it possible to generate immune responses against highly aggressive
metastasizing tumor cells ? Or could it be that such tumor cells are already
selected towards immune resistance ?

There had been a report from syngeneic murine lymphoma that a response
to immunotherapy depended on the antigenicity of the tumor. Following
injection of a known number of tumor cells, in that report, the mice were
treated either by administration of irradiated tumor cells, living Bacillus
Calmette-Guérin (BCG) vaccine or both (104).

BCG is a vaccine against tuberculosis to reduce tuberculosis-associated
complications in children. A small clinical study in 1976 showed that
intravesical (transurethral) BCG instillation can be successful in superficial
bladder carcinoma. The treatment of superficial bladder cancer is perhaps the
first approved immunotherapy. The treatment of this cancer has three
objectives: a) eradication of existing disease, b) prophylaxis against tumor
recurrence, and c) prevention of tumor progression (either muscular invasion,
metastatic spread, or both). When used with prophylactic intent following
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transurethral resection, recurrence rates were lower than those achieved
with other agents. In addition, BCG emerged as the consensus drug of choice
for treating carcinoma in situ of the bladder.

In summary, in the above murine study, the response to BCG alone was
small, irradiated cells were more effective and the best results were obtained
by a combination of the two components. The least responsive lymphoma
line was the least antigenic and the most aggressive.

We obtained two of these lymphoma lines from Prof P Alexander in London
(UK) and termed the parental low metastatic line as Eb and a spontaneous
high metastatic variant thereof as ESb.

Comparative studies with these related lymphoma lines of low and high
metastatic capacity allowed to describe in great detail their differences in
tumor invasiveness in vitro and metastasis formation in vivo (105).

BOX 8 1982 Heparanase

Of great importance was the finding that the metastatic variant ESb was
not generally immunoresistant. Upon testing a variety of immunization
procedures we found a way to reproducibly generate CTLs. These were
capable to specifically recognize the ESb line. What was astonishing was that
these CTLs did not recognize the parental line Eb. So the metastatic variant
had changed the expression of its original TAA (that of Eb cells). The
differences in the antigenicity of the two lymphoma lines could also be seen
in vivo. The tumor-protective immunity generated against one line did only
protect against this line and not against the other. Nevertheless, it was of
importance that we were able to generate protective immunity in vivo even
against the high metastatic variant (106).

An unusual but very effective way of inducing protective immunity against
the aggressive variant ESb was the inoculation of live proliferation-competent
tumor cells into the mouse ear pinna (107). At this site, the induction of the T
cell response was so fast that the tumor cells were prevented from growing.
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The protective immune response, measurable by rejection of subsequent
tumor grafts in the periphery, was long-lasting (> 6 months) and correlated
with the induction of a state of tumor dormancy in the bone marrow (BM)
(107). Further research revealed that this tumor dormancy state was due to a
balance - at a low frequency level - between proliferating tumor cells and
tumor-specific controlling CD8+ memory T cells. Persistence of dormant
tumor cells in the BM of tumor-cell vaccinated mice was apparently due to
control by the immune system and correlated with long-term immunological
protection (107).

BOX 9 1982-1988 Honorable Prizes

ii) BONE MARROW T-CELLS AT THE CENTER STAGE OF IMMUNOLOGICAL
MEMORY

a) basic research in mice

Effector T cells, such as CTLs and cytokine-secreting T helper cells were
thought, at that time, to be of decisive importance in the fight of the immune
system against tumors. Later, tumor-specific memory T cells (MTCs) came
into the focus of being perhaps of greater importance for induction and
maintenance of long-term protective anti-tumor immunity.

A characteristic feature of MTCs is their long-term survival in the absence of
re-exposure to the antigen. Upon disappearance of the source of antigen, the
vast majority of effector T lymphocytes are eliminated via apoptosis. A
fraction of antigen-responsive cells, however, are retained and these belong
to the memory compartment.

Priming of naive T cells leads to association of the tyrosine kinase Lck with
the CD8 co-receptor, thereby enhancing TCR signaling (108). Lck
phosphorylates CD3 activation motives (ITAMs). Of significance was the
discovery that the association between Lck and CD8 is maintained in MTCs.
This explains their enhanced sensitivity to antigen re-exposure. A prerequisite
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for this change seems to consist of sustained T cell stimulation via the
immunological synapse (109).

Since the above discovery of tumor dormancy in the BM from 1994, we
intensified our efforts to understand the phenomenon at least at the cellular
level. Active control of proliferating tumor cells in the BM by CD8+ immune T
cells was described in 1998 (110).

In 2003, we provided evidence, for the first time, that BM is a priming site
for CD8+ T-cell responses to blood-borne antigen (111). Ten years later, 2-
photon dynamic imaging revealed indeed cross-presentation of blood-borne
antigens to naive CD8+ T-cells in the BM (112). We extended our studies of
the BM microenvironment also to CD4+ T-cell responses. The BM
microenvironment was found to facilitate also DC: CD4+ T-cell interactions
and maintenance of CD4 memory (113).

Next we investigated the longevity of MTCs from the BM. Longevity of
protective anti-tumor immunity could be established in T-cell deficient nude
(nu/nu) mice following a single transfer of B-galactosidase (Gal) specific CD8+
T-cells from immunocompetent DBA/2 mice. Upon challenge of naive nude
mice (for control) with live lacZ gene (coding for Gal)-transfected ESb tumor
cells (ESblacZ), the tumor cells grew out quickly and killed the mice. ESblacZ
cells express the dominant T-cell epitope of Gal. Co-transfer of Gal-specific T
cells with the tumor cells prevented tumor outgrowth in the nude mice. As a
result, we documented long-term persistence, at a high frequency, of Gal-
specific T cells in the BM and spleen of these tumor-protected mice (114,115).

The Gal-specific MTCs from the BM could be recruited to the peritoneal
cavity and re-activated there by i.p. challenge with irradiated ESblacZ cells to
become effector memory T cells (EMT) (114). These nu/nu derived EMTs
could easily be harvested and transferred together with live ESblacZ cells to
secondary nu/nu hosts where they protected again against tumor outgrowth.
Long-term immune memory and tumor protection could be maintained in
this way over four successive transfers over a long period of time (> 8
months). Further studies revealed that the presence of Gal-expressing
dormant tumor cells was indispensable to boost specific T-cell frequencies to
levels detectable by peptide-MHC multimers. Apparently, there existed in the
BM a balance between Gal-expressing dormant tumor cells and Gal-specific T
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cells. This possibly provided a selective advantage of Gal-specific T cells over
irrelevant clones for homing to and surviving in niches of the BM (115).

Immune MTC transfer studies were also performed in immunocompetent
mice. To test the graft-versus-leukemia (GvL) therapeutic potential of MTCs
from different compartments (spleen, peritoneal cavity and BM), we selected
a GvL animal model of advanced metastasized cancer which we had
established in 1995 (116). In 2005, we reported that tumor-immune memory
T cells from the BM were superior to MTCs from the other compartments and
exerted GvL without graft-versus-host (GvH) reactivity in advanced
metastasized cancer (117). The mechanisms of this complete remission of
cancer in late-stage disease by radiation and transfer of allogeneic MHC-
matched immune T cells have been elucidated over ten years of research and
summarized recently (118).

Further details about these results and the complete reversion of cancer-
associated dysregulation by the immune system will be given and discussed
in Chapter VII.

b) clinically relevant findings

In the year 2000, a very bright medical student, M Feuerer, started to
investigate under my supervision the BM in man as an immunological T-cell-
response compartment. We were lucky to arrange with the Heidelberg
University Hospital of Gynaecology (Head: Prof G Bastert) and with the help
of the physician | Diel to obtain samples of BM aspirates from breast cancer
patients. These were collected at the hospital to test for the presence of
tumor cells while the non-tumor mononuclear cells were of no interest. So,
we could obtain part of the samples to study the mononuclear cells. BM
derived mononuclear cells from primary operated breast cancer patients (n =
90) were compared by multicolor flow cytometry analysis with those from
healthy donors (n = 10) and also with cells from respective blood samples.
The most surprising results from all the immunological changes observed in
the BM of cancer patients was the significant increase of memory T cells
(MTCs) among the CD4+ and CD8+ T cells (p<0.001) (119).

In 2001, Feuerer et al. described in an article published in Nature Medicine
(120) about therapy of human tumors in NOD/SCID mice with patient-derived
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reactivated MTCs from bone marrow. In an analysis of 84 primary-operated
breast cancer patients and 11 healthy donors, the BM of most patients was
found to contain MTCs with specificity for TAAs. In short-term culture with
autologous DCs pre-pulsed with breast cancer lysates, patient’s MTCs from
BM (but not from the peripheral blood) could be specifically re-activated to
interferon-y  (IFN-y) producing and cytotoxic effector cells. A single
intraperitoneal (i.p.) transfer of re-stimulated BM derived T cells into
NOD/SCID mice caused regression of autologous subcutaneous (s.c.) tumor
xenotransplants. Tumor regression was associated with infiltration by human
T-cells and DCs and with tumor-cell apoptosis and necrosis. Re-activated T
cells from the peripheral blood of the same patients showed much lower anti-
tumor reactivity.

The BM of breast cancer patients was found to contain, among others, CD8+
T cells specific for peptides derived from breast cancer-associated proteins
such as MUC1 and HER2/neu. Most of these had a T-cell central- or effector -
memory phenotype. To test their in vivo function, BM derived CD45RA+ naive
or CD45RA-CD45R0+ memory T cells were separated, stimulated like before,
and then transferred i.p. into NOD/SCID mice bearing autologous breast
tumors and normal skin transplants. CD45RA- memory but not CD45RA+
naive T cells infiltrated autologous tumor but not skin tissue after the
transfer. Tumor infiltration included cluster formation in tumor tissue by
MTCs with co-transferred DCs. The results demonstrated selective homing of
cancer-reactive MTCs to human tumor in vivo and suggested that tumor
rejection was based on recognition of TAAs on tumor cells and DCs by
autologous specifically activated central- and effector-MTCs (121,122).

Co-culture of MTCs from BM of breast cancer patients with DCs not
presenting TAAs (i.e. noncognate co-culture system for specificity control)
caused apoptosis of the T cells. Also, transfer of re-activated BM T cells
without the DCs from the co-cultures was insufficient to cause tumor
regression in vivo. In co-cultures allowing for antigen-specific cognate
interactions, the expression on DCs of CD83, MHC class Il, CD40 and CD86
molecules was upregulated and the cytokines IL-12 and IFN-o were produced
in significantly elevated amounts. These findings suggested that cognate
interactions between patient-derived BM derived T-cells and tumor antigen-
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presenting BM derived DCs are important for reciprocal cell stimulation,
survival and therapeutic activity (123).

c) Influence of adjuvant hormone therapy and chemotherapy on the immune
system in the bone marrow of patients with breast cancer

The purpose of this study was to analyse the effect of adjuvant systemic
therapy in breast cancer on the immune system in the BM compartment. In
34 patients with breast cancer, BM was aspirated 2 years after primary
surgery and adjuvant systemic therapy. The immune system of these patients
was compared with that of patients at the time of surgery (n = 90). It was
found that the proportion of all T cells was significantly reduced.
Chemotherapy apparently had a particularly suppressive effect on naive CD4
T-cells and, to a lesser extent, on memory CD4 T-cells. Hormone therapy had
a significant suppressive effect on both naive and memory CD8 T-cells. These
findings suggest profound and long-lasting negative effects on the BM
immune system by present-day standard adjuvant therapy in breast cancer
(124).

d) A pilot clinical study of adoptive T-cell therapy with re-activated BM
derived cancer-reactive MTCs

Aim of the study was to investigate whether ex vivo re-activation of cancer-
reactive MTCs from the BM and their adoptive transfer to autologous
patients is feasible and increases the frequency of cancer-reactive T cells in
the blood. Twelve late-stage metastasized breast cancer patients with a
positive pre-test for the presence of cancer-reactive MTCs in their BM were
included. They had received standard therapy and therefore reduced T-cell
reactivity, as reported above. In all cases, the treatment was feasible and well
tolerated.

7 days after the transfer of cells from the re-stimulation cultures, 6 patients
(immunological responders) showed by ELISPOT analysis de novo TAA-specific
IFN-y secreting T cells in their blood sample. In contrast, 6 other patients
(immunological non-responders) showed in their blood sample TAA-induced
IL-4 responses (125). Responder patients had received 6.5x10 cells while
non-responders had received somewhat lower numbers from their
stimulation cultures. This was due to reduced activation of MTCs, to
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increased amounts of CD4+CD25" Treg cells in their BM and to increased
TAA-induced IL-10 secretion.

The 6 to 10 million re-activated MTCs from the BM that had been adoptively
transferred to responder patients must have extensively expanded in vivo to
reach the numbers that were detected by ELISPOT 7 days later in the
peripheral blood. All these patients had been negative in this assay before
the cell transfer.

A follow-up analysis revealed later that immunological responder patients
had a significantly higher overall survival compared to the nonresponder
patients (58,6 versus 13,6 months) (126).

iii) HYPOTHESIS: INVOLVEMENT OF T-MEMORY STEM CELLS
Several of the reported observations deserve an explanation:
i) MTCs controlling tumor dormancy for long-term and selectively in the BM,
ii) flexibility and dynamics of MTCs,
iii) longevity, and
iv) expansion capacity.

We like to put forward the hypothesis that MTCs from BM contain a fraction
of stem cell-like MTCs which, like BM resident hematopoietic stem cells (HSC)
divide asymmetrically to provide self-renewal and differentiational capacity.
BM can be considered as a central organ for maintenance of immunological B-
cell and T-cell memory.

HSC, memory B- and memory T-cells are the only cells of the hematopoietic
system that undergo self-renewal for the lifetime of the organism. These 3
cell types were shown to share a transcriptional program of self-renewal. This
signature of up- and down-regulated transcripts was not consistently
enriched in neuronal or embryonic stem cell populations and, therefore,
appears to be restricted to the hematopoietic system (127). Wnt signaling
(128) and mTOR signaling (129) seem to be involved in the formation of stem
cell-like MTCs.
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It is suggested that BM contains not only niches for HSCs but also niches for
B- and T-cell MTCs. T-cell niches, rich in IL-7 and IL-15, allow for optimal T cell
maintenance, as T cells can survive in the absence of antigen, in an
environment rich in these two cytokines (130). Memory CD8+ T cells were
found to co-localize with IL-7(+) stromal cells in BM (131). TNF family ligands
define BM niches for T-cell memory (132). Several groups described that BM
is @ major reservoir and site of recruitment for central memory CD8+ T-cells
(133). BM thus provides nests for migratory memory T-cells (134). F Di Rosa
described T-lymphocyte interaction with stromal, bone and hematopoietic
cells in the BM (135) and TC Becker et al. reported that BM is a preferred site
for homeostatic proliferation of memory CD8+ T-cells (136).

A human memory T cell subset with stem cell-like properties was described
to be a long-lived T cell population with enhanced capacity for self-renewal.
These cells had a multipotent ability to derive central memory, effector
memory and effector T-cells. Such memory cells contained specificities to
multiple viral and self-tumor antigens. Their phenotype was CD45R0(-),
CCR7(+), CD45RA(+), CD62L(+), CD27(+), CD28(+) and IL-7Ra(+) similar to
naive T cells. However, they expressed large amounts of CD95, IL-2RB, CXCR3,
and LFA-1, and showed numerous functional attributes distinctive of memory
cells (137).

High-troughput sequencing of retroviral vector integration sites (ISs) allowed
tracing the fate of more than 1700 individual T cell clones in gene therapy
patients. These had received infusions of gene-corrected hematopoietic stem
cells or mature lymphocytes. Such in vivo tracking of T-cells unveiled decade-
long survival and activity of genetically modified T memory stem cells (138).

It is obvious that stem cell-like memory T-cells are of great relevance for T
cell based adoptive immunotherapies. They represent a stable cellular vehicle
with memory precursor potential.

FURTHER READING

Cancer immunotherapy has become of such clinical importance that we like
to add some recent reviews for the interested reader.
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A. Since immunological memory distinguishes immunotherapy from
all other cancer therapies, we start with reviews about
immunological memory (2004-2016).
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Chapter IV

Key points:

1. It took more than hundred years of development for cancer
immunotherapy to become a standard treatment option for patients.

2. Therapeutic monoclonal antibodies, the products of B lymphocytes, can be
targeted against defined molecules on tumor cells (e.g. HER2, CD20, VEGFR2).
Of particular interest are presently immune checkpoint inhibitory antibodies
directed against molecules on immune cells (e.g. CTLA-4, PD-1).

3. Immunotherapy based on T-cell mediated immunity includes active
immunization with cancer vaccines (Chapter V) and adoptive cellular therapy
with tumor-targeted T cells.

4. Dendritic cells are required for antigen presentation to T cells. They process
tumor-associated antigens (TAAs) and present small peptides thereof in
association with MHC molecules (pMHC complexes) to T cells. The pMHC
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complexes associate like a key and a lock with antigen-specific receptors
(TCRs) on CD8+ cytotoxic or CD4+ helper T-cells.

5. Adoptive cellular therapy with T-cells involves semi-allogeneic donor cell
transfer to obtain Graft-versus-Leukemia (GvL) effects or autologous immune
cells such as Tumor-infiltrating lymphocytes (TILs). Modern gene transfer
technologies allow to produce T cells with transfected TAA specific TCRs or
with chimeric TAA specific receptors (CARs).

6. This chapter includes auto-biographical notes and examples from the
authors research on adoptive cellular immunotherapy.

7. Of particular interest are cancer-reactive memory T cells from bone
marrow of cancer patients. They include long-lived stem-like memory T cells.
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Table 23 Curriculum Vitae Prof V Schirrmacher

1962-1967 Diploma Study of Biochemistry, University of Tiibingen,
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Germany
1967-1970 PhD Thesis in Immunology, University of Cologne, Germany
1971-1973 Post-Doc at Karolinska Institute, Stockholm, Sweden
1973-1976 Senior Research Fellow , The London Hospital Medical
College, London, England
1976-2008 Head of Division at DKFZ, Heidelberg, Germany

2009-present  Head of “Tumor Immunology” at I0ZK, Cologne, Germany

Table 24 Milestones from immunology

Part | B cells and antibodies

1908 P Ehrlich* and Il Metschnikow* Theory of antibody side chains and
studies on phagocytic cells

1960 FM Burnet* and PB Medawar* Acquired immunological tolerance

1972 GM Edelman* and RR Porter* Chemical structure of antibodies

1984 NK Jerne*, GJF Kéhler* and C Milstein*  Principles for production
of monoclonal antibodies

1987 T Susumo* Molecular genetics of antibody variability

* Nobel Laureats
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Table 25 Characteristics of anti-receptor antibodies (in comparison to SMis)

Target : Receptor ectodomain (vs TK domain)

Specificity: Very high (vs less high)

Binding: Receptor internalized, only slowly regenerated (vs rapidly reversible)

Dosing: intravenous, weekly (vs oral daily)

Tissue distribution: less complete than small molecules

Toxicity : rash, allergy (vs rash, diarrhea, pulmonary)

ADCC: possibly (vs not)

Table 26 Therapeutic monoclonal antibodies | : Tumor cell targets

Agent Target FDA-approved indication(s)
Trastuzumab (Herceptin) HER2 Her2+ breast cancer and gastric cancer
Pertuzumab (Perjeta) HER2 Her2+ breast cancer

Cetuximab (Erbitux) HER1 CRC (k-ras wt); HNSCC

Bevacizumab (Avastin) VEGF ligand CRC; Renal Ca; NSCLL; GBM; Ova Ca
Ramucirumab (Cyramza) VEGFR2 CRC; gastric Ca; NSCLL

Alemtuzumab (Campath) CD52 B-cell CLL

Daratumumab (Darzalex) CD38 Multiple Myeloma

Rituximab (Rituxan, Mabthera) CD20

Elutuzumab (Empliciti) SLAM?7

Denosumab (Xgeva) RANKL
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Dinutuximab (Unituxin) GD2 Pediatric neuroblastoma

Olaratumab (Lartruvo) PDGFRa Soft tissue sarcoma

Table 27 Therapeutic monoclonal antibodies Il : Targets within the immune

system (Checkpoint inhibitors)

Agent Target FDA-approved indication(s)
Ipilimumab (Yervoy) CTLA-4 Melanoma
Nivolumab (Opdivo) PD-1 HNSCC, Non-small cell
lung cancer (NSCLC),

Renal cell carcinoma,
Melanoma, Hodgkin Lymph.

Atezolizumab (Tecentriq) PD-L1 Urothelial Ca, Non-small
cell lung cancer (NSCLC)

Durvalumab (Imfinzi) PD-L1 Urothelial carcinoma

Table 28 Side effects of immune checkpoint inhibiting mabs
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IMMUNE-RELATED ADVERSE EVENTS (irAEs)

Skin: rash, rarely bullous pemphigoid (BP)

Liver: hepatitis

Gastrointestinal: diarrhea, vomiting, colitis (all grades and high grade)
Kidney: acute interstitial nephritis

Endocrine: hypophysitis, more rarely thyroid disease, occasionally adrenal
insufficiency

Fatigue: Fewer high grade events with anti-PD-1 than with anti-CTLA-4 mabs

Table 29 Milestones from Immunology

Part Il T cells and DCs

1973 R Zinkernagel* and P Doherty*: Discovery of MHC restriction of
CTLs; Nobel price in 1996

1984 T Mak*: Cloning of the genes encoding the human T Cell antigen
Receptor (TCR)

1991 T Boon: First molecular identification of a human TAA recognized
as pMHC | epitope by a cytolytic T lymphocyte (CTL)

2001 M Feuerer: cancer-reactive memory T cells from bone marrow

2006 B Kyewski and L Klein: A central role for central tolerance

2011 RM Steinman*, B Beutler* and J Hoffmann*: Nobel price
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for discovery of Dendritic cells (DCs), Toll-like receptors (TLRs)
and innate immunity;

2015 JP Allison: Immune checkpoint therapy

* Nobel Laureats

Table 30 Milestones of cancer immunotherapy

1890 W Coley Discovery of Coley’s Toxin

1909 P Ehrlich Hypothesis of immune control

1960 BCG showing activity in bladder cancer

1967 Burnet & Thomas Immune surveillance of cancer

1986 HM Golomb Interferon-o for cancer immunotherapy
1991 P Van der Bruggen Cloning of the first human TAA (MAGE-1)
1992 Discovery of Interleukin-2

1996 Discovery of anti-tumoral effect of blockade of CTLA-4
1998 Introduction of Rituximab and Trastuzumab

1998 S Rosenberg Adoptive immunotherapy by T cells

2010 First FDA approved anti-tumor vaccine (Sipuleucel-T)
2011 Clinical application of CAR T cells

2011 Clinical application of anti-CTLA-4 mab

2014 Introduction of bispecific T-cell activating antibody BITE

2015 Clinical application of anti-PD1
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2016 Clinical application of anti-PD-L1
2016 Clinical approval of the oncolytic virus T-VEC
2016 First application in humans of CRISPR gene-editing technique

for CAR T-cell therapy

Table 31 Major Research Topics of Prof V Schirrmacher

1976 -2008 Immune responses against metastases:
CTL, Th, memory T cells (MTC) from bone marrow (BM),
ADI and GvL studies in early and late-stage metastasis
1980-2000 Cancer metastasis research (Eb/ESb mouse tumor model)
1985-2000 Active-specificimmunotherapy: experimental:
ATV-NDV vaccine, post-operative vaccination,
Oncolytic virus, DNA vaccination via ear pinna;
1990-2008 Active-specificimmunotherapy: multiple clinical studies:
translational research with ATV-NDV vaccine in
cooperation with University Clinics in Heidelberg
2010-2017 Development and individual application of the VOL-DC

Vaccine and multimodal immunotherapy at 10ZK

ADI Adoptive immunotherapy; ATV-NDV Virus-modified Autologous Tumor
Vaccine; CTL Cytotoxic T lymphocyte; GvL Graft-versus-Leukemia; VOL-DC
Dendritic cell vaccine pulsed with viral oncolysate
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CHAPTER V. ONCOLYTIC VIROTHERAPY AND VIRUS-

MODIFIED ANTI-CANCER VACCINES

This Chapter is based on two excellent textbooks, namely “Viral Oncology.
Basis Science and Clinical Application” (1) and “Viral Therapy of Cancer” (2).
Oncolytic viruses and thereof derived anti-cancer vaccines is the major focus.
This includes molecular modification of viruses with therapeutic transgenes,
adaptor proteins and bispecific antibodies. For more details we recommend
two further textbooks: “Gene Therapy of cancer. Methods and Protocols” (3)
and “Molecular Vaccines” (4).

Since this Chapter will not present an overview of Cancer Vaccines in
general, we recommend the book “Cancer Vaccines. From Research to Clinical
Practice” (5). Since several promising oncolytic viruses in clinical development
are RNA viruses belonging to the family of paramyxoviruses, the excellent
textbook “The Biology of Paramyxoviruses” (6) is also recommended.

A. MILESTONES FROM VIROLOGY WITH RELEVANCE TO CANCER
Table 32 lists milestones from virology with relevance to cancer.

Research on viruses played an important role in molecular biology, in
discovering oncogenes and in identifying oncogenic viruses which are
etiological agents in 15%-20% of human cancers. There are six well-
established human cancer viruses: Hepatitic B Virus (HBV), Hepatitis C Virus
(HCV), Human Pappilloma Virus (HPV), Human T cell leukemia virus type 1
(HTLV-1), Epstein-Barr Virus (EBV), and Kaposi's sarcoma herpesvirus (KSHV).

Several Nobel Prizes for Physiology or Medicine were awarded for research
from virology. 1966 the prize was given to FP Rouse who, as early as 1911,
had discovered that a malignant tumor growing in chicken could be
transferred to another fowl simply by exposing it to a cell-free filtrate. His
life-long study on the responsible agent led to the discovery of the retrovirus
Rous Sarcoma Virus (RSV). M Delbriick, AD Hershey and SE Luria obtained the
Nobel Prize in 1969 for elucidating a virus replication cycle and the genetic
structure of viruses. D Baltimore, R Dulbecco and HM Temin obtained the
Nobel Prize in 1975 for their discovery of tumor virus interaction with host
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cell DNA, leading to the description of cellular proto-oncogenes. In 2008, the
Nobel Prize for Physiology or Medicine was awarded in part to H zur Hausen
for his studies on human Papillomaviruses (HPV) and their role in cervical
cancer development. The other part was given to two French scientists, FB
Sinoussi and L Montagnier, for their discovery of the human
immunodeficiency virus (HIV) causing AIDS.

i) PREVENTIVE CANCER VACCINES

It is obvious that preventing a disease is more desirable than to become sick
and deserve treatment. Viral vaccines that have an effect of prevention on
certain types of cancer is a success story.

Hepatitis B virus (HBV) was discovered in 1967 by the laboratory of BS
Blumberg. An association with primary cancer of the liver (hepatocellular
carcinoma (HCC)) was postulated in 1969. There are about 400 million people
worldwide who are HBV carriers. Some of them are at risk of developing
chronic liver disease and HCC. HCC is the third most common cause of death
from cancer in males and the seventh in females. For the WHO, vaccine
prevention of HCC was one of the two most important cancer control
programs along with smoking cessation projects. In less than two decades
after approval of the HBV vaccine, it was in use worldwide and a common
and deadly cancer had decreased in incidence.

There are other infectious agent-related cancers: EBV associated with
endemic Burkitt's lymphoma and nasopharyngeal carcinoma, HTLV-1
associated with adult T-cell leukemia/lymphoma (ATL), Helicobacter pylori
associated with mucosa-associated lymphoid tissue lymphoma (MALTOMA)
and gastric cancer, HPV associated with cervical and other anogenital cancers.

In 2006, the FDA approved a vaccine (Gardasil) against HPV. Another vaccine
(Cervarix) against HPV was approved in 2007. Both vaccines consist of virus-
like particles (VLPs) containing recombinant HPV-derived L1-proteins. The
tetravalent Gardasil contains L1 proteins from HPV 6,11,16 and 18, while the
bivalent Cervarix contains L1 proteins from HPV 16 and 18.

The widespread use of HBV and HPV prophylactic vaccines will result in a
clear-cut drop in the prevalence of these two viruses in the human
population.
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ii) ONCOLYTIC VIRUSES

Oncolytic Virus Therapy (OVT) is an emerging biological cancer treatment
modality which uses replication-competent viruses to destroy cancer cells.
The good news is that such viruses replicate selectively in cancer cells and
damage cancerous tissue without causing harm to normal tissues (7).
Oncolytic viruses (OVs) and their effects in cancer patients have been
observed along the last century. In the 1950s and 1960s there has been an
increased attention to such type of viruses and a search to find the most
suitable agents for clinical application (8).

Two pioneers in this field at the time were WA Cassel from Atlanta (USA)
and J Lindenman from Ziirich (Switzerland) (Table 31). Cassel had discovered
the particular anti-neoplastic and immune-stimulatory properties of the avian
paramyxovirus Newcastle disease virus (NDV) (9), while Lindenman had
worked mostly with human Influenza virus. Both described the phenomenon
of viral oncolysis in vitro and in vivo and discovered the importance of post-
oncolytic anti-tumor immunity. Cassel engaged himself thereafter in the
development and application of NDV-based oncolysate vaccines for the
treatment of early-stage melanoma patients (8). Lindenman discovered type |
interferon as an antiviral agent (10). The milestones of Table 32 end with S
van Gool from Leuven (Belgium) who in 2015 described in detail in an
orthotopic mouse glioma model, NDV induced Immunogenic Cell Death (ICD)
and its consequences for induction of a powerful protective anti-tumor
immune response (11). S Van Gool joined our Institution 10ZK in Cologne
(Germany) in 2016.

Examples of oncolytic viruses are listed in Table 33. Some viruses such as H1
parvovirus, reovirus, NDV, Mumps virus and Moloney leukemia virus (MLV)
have a natural preference for cancer cells. Others, like Measles virus (MeV),
Adenovirus (HAdV), Vesicular Stomatitis Virus (VSV), Vaccinia (VV) and Herpes
Simplex Virus (HSV) can be engineered to make them cancer-specific.

For further details about the different families of OVs and about safety
aspects, we recommend on excellent review (12). SJ Russel reviewed about
oncolytic RNA viruses (13) and about the history of oncolytic viruses (14).
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More recently, the concept of OV therapy shifted from the oncolytic activity
of viruses as being important for the therapeutic effect towards the induced
post-oncolytic immune response. So there is an overlap between OV therapy
and immunotherapy (15,16). Finally, a recent review deals with T-VEC and
other oncolytic viruses which are close to drug approval (17).

B. THE IMPORTANCE OF TYPE | INTERFERONS

The importance of type | IFN, discovered by J Lindenman (1974, Table 31)

and its effects on the immune system can hardly be underestimated.
Introduction and clinical use of IFNs are one of the major advances in
oncology over the past three decades. The 1980s saw the clinical introduction
of these highly purified pharmaceuticals as the first products of
biotechnology for treatment of cancer. The 1990s were marked by an
expansion in clinical use and a better understanding of the molecular events
that influence the biological actions.

i) TUMORS RESPONDING TO IFN THERAPY

IFNs are now licensed in more than 50 countries for treatment of various
viral, malignant, and immune disorders. In CML, melanoma, renal cell
carcinoma, bladder carcinoma, Kaposi sarcoma, hairy cell leukemia,
lymphomas, myeloma, polycythemia vera, locally advanced basal cell
carcinoma, and essential thrombocythemia, interferons have therapeutic
value. For example, the median survival for all patients with CML treated with
IFN-02 has been approximately 6 years, but over 90% of those with complete
cytogenetic response were in remission at 10 years (18).

i) TUMORS NOT RESPONDING TO IFN THERAPY

A majority of human tumors, in particular the carcinomas, do not respond to
IFN therapy. Below we will discuss about escape mechanisms by tumor cells
and also by viruses. To better understand underlying mechanisms requires
understanding of molecular aspects of interferon receptors and signaling, of
interferon-stimulated genes (ISGs) and of interferon-regulated proteins and
their cellular effects (apoptosis, immunoregulation, angiogenesis inhibition).

IFNs bind to cell surface receptors, which are transmembrane proteins, and
trigger signaling by their cytoplasmic domains. Cells of all lineages, except
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mature erythrocytes, express receptors for type | and type Il IFNs. Type | IFN
receptors have two subunits. Both are needed to bind the ligand IFN-c or -8
with high affinity. The critical event in triggering the signaling process for type
I and type Il IFNs is ligand-driven dimerization of receptors which results in
cascades of tyrosine phosphorylation.

There are more than 300 ISG proteins induced and transcriptionally
regulated through IFN signaling pathways. They determine anti-tumor and
immunoregulatory actions and have anti-viral effects. Suppression of IFNs
and their stimulated gene products in and by malignant cells is emerging as
an important contributor to the development of human cancer. For example,
mutation of a gene in the IFN response pathway, RNAse L, increases prostate
cancer risk (19). Epigenetic and genetic silencing of IFN signaling or ISG
expression also likely influence tumor development (20).

iii) ONCOLYTIC VIRUSES AND OTHER AGENTS AS INDUCERS OF IFN

Cells of the innate immune system express pattern recognition receptors
(PRRs) that detect viral nucleic acids and initiate host antiviral responses.
Toll-like receptors (TLRs) are membrane bound while RIG-I-like receptors
(RLRs) are present in the cell’s cytoplasm.

NDV, a potent inducer of type I IFN, is an agonist of RIG-I (in man) and MDA-
5 (in birds) (21). RGT100 (Rigontec) is a synthetic oligonucleotide and ligand
of RIG-I which is being evaluated in Phase I/11 clinical studies (22). Examples of
TLR agonists in clinical development are Poly-ICLC (Oncovir) (TLR3),
Imiquimod (3M Pharmaceuticals) (approved) (TLR7) (17) and the
oligonucleotide MGN-1703 (Mologen) (TLR9) (23).

Dendritic cells can function as a link between innate and adaptive immunity
systems (24). They are a primary source for production of IFNs. Their
maturation is also influenced by IFNs (24). Viral infection or viral
oligonucleotides (22) such as double-stranded (ds) or single-stranded (ss) RNA
or DNA or viral envelop proteins (25) can trigger the type I IFN response. Type
| interferon gene induction involves the interferon regulatory factor family of
transcription factors (26). NDV HN protein also activates TRAIL expression on
cells and triggers NK cell activation via NKp46 (25,27).
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Interferon-regulated proteins exert multiple functions: Some contribute to

apoptosis, e.g. TRAIL, FasL, IRF-1, RNAse L, OAS, PKR (28,29). Others
contribute to the immune response, e.g. MHC class | and Il, LMP-2, LMP-7,
TAP, CEA, TAG-72, CCL chemokines, CXC and CXCL chemokines (30, 31).
Further induced proteins contribute to inhibition of angiogenesis, e.g.
decrease of bFGF, VEGF, and IL-8, CXCL-9, CXCL-10 and CXCL-10 (32,33).

These facts demonstrate the intimate connection between the type |
interferon response and physiological regulatory mechanisms in multicellular
organisms.

C. IMMUNE ESCAPE MECHANISMS

Tumor cells evolve because they manage to avoid immune detection or
destruction. They also manage to resist apoptosis and translational
suppression. These are key responses used by normal cells to limit virus
infection. Table 34 lists some immune escape mechanisms exerted by tumor
cells. The mere fact that tumor cells are selected towards such escape
mechanisms is a strong argument in favor of a role of immune surveillance in
tumor development. This has been disputed for decades not only within the
Institution DKFZ, in which | was engaged to develop immunotherapy
strategies but also elsewhere.

Famous are meanwhile the three Es of cancer immunoediting proposed by
GP Dunn, U Old and RD Schreiber (34). They characterize three basic
situations in the battle between the immune system and cancer:

i) elimination,
ii) equilibrium, and
iii) escape.

To avoid attack by the immune system, tumors produce
immunosuppressive cytokines (often observed in glioblastoma), recruit
inhibitory cells such as regulary T cells (Tregs) or myeloid-derived suppressor
cells (MDSCs), upregulate PD-L1, downregulate expression of TAAs and/or
MHC molecules or express the enzyme indolamine-2,3-dioxygenase (IDO).
This enzyme leads to tryptophane shortage in the tumor environment and to

arrest of T cell proliferation (35).
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To survive in a perhaps hostile environment, tumor cells also develope
escape mechanisms against the growth inhibitory effects of type | interferons
(36), against apoptosis inducing signaling (37) and against other mechanisms
of control (38). This is the Achilles heel through which OVs have a chance to
enter, to develop, replicate and kill their host cells (39).

Viruses also develop immune escape mechanisms. In order to be able to
survive in a permissive host, e.g. the species from which the virus derived,
OVs had to develop immune escape mechanisms. Many of the proteins
developed by OVs in their respective host’s to fight their immune system
have meanwhile been identified. Some of these are listed in Table 33.

Human natural viruses with immune suppressive mechanisms are not suited
to induce immunogenic cell death mechanisms. It is therefore necessary to
produce recombinant virus strains lacking the respective immunosuppressive
genes. Often it reqires sophisticated techniques of genetic engineering to
develop a recombinant viral vector with all the necessary properties: tumor
selectivity, replication competence, therapeutic gene expression, antigenicity,
immunogenicity etc.

The cells of the innate immune system of the central nervus system (CNS)
also express PRRs (e.g. TLRs, RIG-I, MDA-5) that detect viral nucleic acids and
initiate host antiviral responses. However, several emerging viruses (West
Nile Fever, Influenza A, Enterovirus 71, Ebola) are recognized and internalized
by host cell receptors (TLR, MMR, DC-SIGN, CD62 and Scavenger receptor B)
and escape immune surveillance (7). Many RNA viruses express viral proteins
that inhibit the host cell anti-virus type | interferon response, thus promoting
virus replication and encephalitis. Examples are NS1 (/nfluenza A), VP 24 and
VP 35 (Ebola), and Glycoprotein (Rabies) (7) (Table 33) (7).

The avian virus NDV has the advantage that in non-permissive hosts such as
humans certain native strains have

i) a high safety profile (39,40),
ii) tumor selective replication competence,
iii) oncolytic capacity, and

iv) no immune escape mechanism (38).
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In contrast, in permissive hosts (birds) the virus developed immune escape
mechanisms. These have to do with the viral V protein: It possesses the
ability to inhibit IFN-at and this inhibitory function is located in its carboxy-
terminal domain (41). The V protein plays an important role in host range
restriction (42). In birds but not in man it targets phosphorylated STAT1 to
block IFN-I signaling (43). It is of particular significance that immune evasion
by the primate virus Ebola uses exactly the same pathways of signaling
through RIG-I and type | interferon receptor (IFNRca) as NDV in birds (44). In
man, in case of NDV, these signaling circuits lead to immune activation
whereas in case of Ebola their inhibition via two defined glycoproteins (VP 24
and VP 35) has devastating effects (44).

D. CONCEPTS OF APPLICATION OF ONCOLYTIC VIRUSES

Table 35 lists various concepts of in vivo application of OVs. As single
agents, they may be applied intratumorally (if the tumor is non-operable and
can be targeted), systemically or locoregionally. There are various barriers to
efficient oncolytic virus delivery via the bloodstream:

i) virus neutralization by serum factors such as complement components (46),

ii) sequestration by the mononuclear phagocytic system or insufficient
extravasation.

Combining OVs with carrier cells, such as mesenchymal stem cells (47) or
activated T cells (48) might be a solution for certain virus applications.
Another possibility is to combine OVs with adapter proteins, such as
bispecific antibodies or trispecific immunocytokines (see below, Tables
38,39).

NDV (11) and several other OVs induce immunogenic cell death (ICD). Many
components released by ICD have a pro-inflammatory effect and support an
immune response against released TAAs. It is therefore logic to try to
generate ICD under defined conditions ex vivo and thereby to create an anti-
tumor vaccine.
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WA Cassel, J Sinkovicz and others performed in the 1960s and 1970s clinical
studies with oncolysate vaccines in melanoma and other cancer patients.
Their results have been summarized (8). For all these pioneers it was not easy
to perform such studies. The scientific basis was rather weak and skepticism
or even opposition by clinicians was omnipresent.

OVs can be combined with tumor cells or TAAs for the purpose of anti-
tumor vaccination. Table 34 lists 3 possibilities:

i) oncolysate vaccines (8),
ii) live tumor cell vaccine (ATV-NDV) (49),
iii) oncolysate-pulsed DC vaccine (VOL-DC) (50).

Oncolysate vaccines were developed in the 1960s, ATV-NDV vaccine in the
1990s and VOL-DC vaccine in 2010. Each step of development was based on a
different concept of increasing the immunogenicity of the vaccine. First, it
was the combination of a virus with a tumor lysate. The second step followed
the concept that a live cell vaccine is superior to a cell lysate. Finally, the live
tumor cell was replaced by a professional DC as APC presenting TAAs from
processed oncolysate.

E. TARGETED THERAPY WITH ONCOLYTIC NDV

Oncolytic NDV has been applied for treatment of Glioblastoma multiforme
(GBM). GBM or grade IV glioma is one of the most lethal forms of human
brain cancer. The signaling pathways that are responsible for high grade
glioma initiation, migration, and invasion are becoming elucidated. The
abnormal proliferation and aggressive invasion behavior of GBM is reported
to be associated with aberrant Racl protein signaling.

It is in this respect of particular interest that NDV has been demonstrated to
interact with Racl (51). It uses Racl upon viral entry, syncytium induction,
and actin reorganization of the infected cell as part of the replication process.
Ultimately, intracellular stress in the infected glioma cell leads to cell death
(52).

Table 36 lists different pathways which NDV can target in human GBM
tumor cells:
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i) apoptosis pathways,

ii) cell cycle arrest pathways,

iii) Rac1 signalling pathways and

iv) RIG-1 and IFNRa. signaling pathways.

NDV mediates its oncolytic effect by both intrinsic and extrinsic caspase-
dependent pathways of cell death (53). NDV-induced apoptosis is dependent
on upregulation of TRAIL and caspase activation, especially in apoptosis-
resistant cells (54). This causes opening of mitochondrial permeability
transition pores and loss of mitochondrial membrane potential, leading to
activation of the apoptosis process (55). MAPK and ER stress pathways also
play important roles in NDV-mediated oncolysis (37,53).

Interestingly, NDV can exert oncolytic activity also against hypoxic cancer
cells, which is of clinical relevance (56). In addition, tumor selectivity of NDV
replication has been attributed to defects of tumor cells in antiviral defense
(57,58). Such defects involved the early intra-cellular response initiated by
RIG-1 as well as the late feedback-loop response to secreted type | IFN
initiated by the type | IFNR membrane receptor (36).

Of importance was also the discovery in 2000 (59) that NDV infection
induces a B7-1/B7-2-independent costimulatory activity in human melanoma
cells. This allowed to break tolerance of a melanoma-specific T helper cell
line.

The sum of all these properties make NDV to an interesting biologic agent
to overcome immune escape and break therapy resistancies (38).

F. MILESTONES IN MODERN DEVELOPMENT OF OV THERAPY

In 2014, “Frontiers in Immunology” devoted an e-book to the timely Topic:
“Harnessing oncolytic virus-mediated antitumor immunity” (60). Topic Editors
were P Fournier and V Schirrmacher. Twelve articles by experts from Canada,
Germany and the USA were dealing with the following aspects:

i) viral oncolysis and the immune response,
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ii) post-oncolytic anti-tumor immune responses,
iii) harnessing OVs with other agents,
iv) delivery of OVs,

v) combining OVs with pharmacological modulators and/or chemotherapy.

We concluded that it was remarkable to what extent the experts in the field
were in accord by emphasizing the potential importance of OVs for systemic T
cell-mediated anti-tumor immunity.

Table 37 lists milestones in modern development of oncolytic virotherapy. It
took about 25 years to develop the first approved OV T-VEC. In 1991, Herpes
Simplex Virus (HSV) was genetically engineered for the first time to generate
a mutant with reduced neurotoxicity. In 1997, an albumin
promoter/enhancer was introduced into an HSV vector for targeting
hepatoma. In 2001, HSV had been modified with transgenes encoding IL-12
and GM-CSF to improve T cell recruitment and immune stimulation. The first
clinical study with intralesional application of T-VEC began in 2009. In 2015 T-
VEC was the first approved OV for melanoma immunotherapy.

Barriers affecting efficiency of OV therapy may exist not only in the blood
but also within a solid tumor mass. They may prevent optimal virus spread.
Such barriers are:

i) extracellular matrix (ECM),
ii) interstitial tissue pressure,
iii) host innate or acquired immune effects.

More efficient spread may be achieved by OVs encoding ECM degrading
enzymes or immune combatting proteins. Similar effects may be achieved
with antifibrotic drugs or with immunosuppressive drugs, such as low dose
cyclophosphamide (61).

The list of Table 37 relates to the OVs Herpes Simplex Virus (HSV),
Adenovirus (AdV), Measles Virus (MeV) and Vaccinia Virus (VV). Many efforts

159



have been made to overcome the mentioned barriers and to improve the
effectivity of OV therapy (7). These included:

1. Improvements in specificity und tumor selectivity by translational targeting
(1991), transcriptional targeting (1997), transductional targeting (2005) or
microRNA targeting (2008).

2. Improvements in potency by prodrug activation (1998), immune
stimulation (2001), radiovirotherapy (2004) or incorporation of matrix
degrading proteins (2006).

3. Improvements of delivery and spread by the addition of
immunosuppressive drugs (1999), by the use of cell carriers (2006), by
shielding with polymers (2008) and by use of infectious nucleic acid (2011).

For further details see the excellent review by SJ Russel et al. (7).
The year 2015 witnessed two important milestones:
i) approval by the FDA of the first OV (T-VEC) for clinical application,

ii) approval by the German authorities of the VOL-DC vaccine for application
by 10ZK, Cologne.

The latter includes NDV production according to GMP guidelines. I0ZK is the
first Institution that has been successful in producing pure high quality
oncolytic NDV.

Table 38 lists the progress that has been made in the last decade to produce
new recombinant NDV viruses with additional therapeutic genes. The
strategies can be categorized as above:

1. Improvements in specificity: targeting TAAs (2008, 2013, 2015).

2. Improvements in potency: introduction of immune stimulatory cytokines
such as GM-CSF (2007), IL-2 (2008) and IL-15 (2017) or of the costimulatory
ligand ICOSL (2017), combining oncolysis with suppression of angiogenesis
(2008), targeting apoptosis pathways via TRAIL (2014), Fas (2015), apoptin
(2012) or p53 (2016), introduction of the interferon antagonist NS1 (2009).
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3. Improvements in delivery and spread: increasing the activity of the fusion
protein (2010, 2013) and of prodrug targeting (2013).

The Table includes the PubMed Library ID numbers (PMID) of the respective
original manuscripts.

G. VIRUS-MODIFIED ANTI-CANCER VACCINES:
MY CONTRIBUTION TO ONCOLYTIC VIRUS THERAPY

In our studies, tumor selective replication of NDV was associated with
tumor cell defects in antiviral defense (57). Resistance of normal cells and
susceptibility of tumor cells to infection by NDV correlated with cellular
expression of RIG-l, IRF3, IFN-B and IRF7 (62). In addition, there was an
important role of the cell surface receptor for the type | interferon response,
IFNRo (36).

i) THE AUTOLOGOUS VIRUS-MODIFIED LIVE-CELL TUMOR VACCINE ATV-NDV

Our work on the NDV-modified tumor vaccine ATV-NDV began in 1986 (63).
In the above mentioned ESb tumor model that we had established to study
cancer metastasis, we had observed that post-operative vaccination with
virally modified but not with unmodified tumor cells had a prophylactic effect
against the outgrowth of metastases. This effect was due to establishment of
specific systemic anti-tumor immunity (64).

The modification of tumor cells with a low dose of NDV was found to cause
augmentation of the tumor-specific CTL response (65). This effect was a result
of CD4+ and CD8+ immune T-cell cooperation (66). Finally, in 1990, we could
demonstrate that the potentiation of the tumor-specific CTL response was
mediated via induction of interferon-o/B (67).

BOX 10 1988 Surgeons confronted with immunotherapy

Improvements since 1978
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This was about the time period when we started with translational studies,
first with human tumor cells and human immune cells ex vivo. Later, we
developed protocols for the design of an autologous, irradiation-inactivated
live tumor cell vaccine similar to the mouse ATV-NDV vaccine (68). Human
tumor cell modification by virus infection was found to be an efficient and
safe way to produce cancer vaccine with pleiotropic immune stimulatory
properties when using NDV (69).

So we tried to convince clinical partners to perform clinical application
studies. One of the first colleagues who was interested was the surgeon Prof
P Schlag. Ethical committees gave the permit to perform those studies. We
had insisted to perform active-specific immunization (ASI) only in the post-
operative adjuvant situation, based on our conviction that the patient’s
immune system had to be as intact as possible to react to specific anti-tumor
vaccination.

BOX 11 1990 - 2008 Clinical studies

Post-operative ASI studies were also performed in primary operated breast
cancer patients with the help of Prof G Bastert and Dr T Ahlert. We used a
post-operative window of 4 weeks to begin with the vaccinations before start
of the standard chemotherapy. The results, published in 1997 (70), revealed
that the ATV-NDV seemed to be effective provided that tumor cell number
and tumor cell viability of the individually produced vaccine fulfilled defined
parameters.

Another clinical study worth mentioning is the post-operative ASI study
performed in patients with glioblastoma multiforme (GBM). The study was
initiated by my colleague Dr C Herold-Mende in 1995. Many clinicians thought
it would be ridiculous to try such procedure in GBM patients because of the
problem with the blood-brain barrier. C Herold-Mende had improved the
procedure to produce the ATV-NDV vaccine. Instead of using cells from
freshly operated cancer specimens with depletion of infiltrated lymphocytes
— the standard procedure until this time -, she employed tumor cells from
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autologous cell cultures, a difficult procedure that she had managed to
perfection.

The objective of the study was to assess feasibility, safety, and clinical
benefit. The results were as follows: The median progression-free survival of
vaccinated patients (n = 23) was 40 weeks versus 26 weeks in 87 non-
vaccinated control patients from the same time period and the same clinic.
The median overall survival (OS) was 100 weeks (versus 49 weeks in the
control patient group, p < 0.001). In the vaccinated group, immune
monitoring revealed significant increases of skin delayed-type
hypersensitivity (DTH) reactivity, of numbers of tumor-reactive memory T
cells in the blood and in the number of CD8+ tumor-infiltrating T lymphocytes
(TILs) in frozen tissue slices from GBM recurrencies. Also, there was one
complete remission of non-resectable remaining brain tumor (71).

BOX 12 2006 An unusual single case of GBM immunotherapy

Finally, we were able together with P Schlag to perform a prospectively
randomized clinical trial. The study was started in the early 1990s. It
investigated the efficiency of ATV-NDV vaccination after liver resection for
hepatic metastases of CRC as a tertiary prevention method. 25 of such stage
IV CRC patients were vaccinated and compared with a similar number of non-
vaccinated control patients.

After an exceptionally long follow-up period of 9-10 years, there was no
significant difference between the vaccinated and the control arm. However,
when stratified for tumor localization there were significant differences
between vaccinated colon and rectum carcinoma patients. A significant
benefit of vaccination was only seen in the colon cancer patients. In the
control arm, 78,6% of the patients had died, while in the vaccinated arm only
30,8% of the patients had died. The trial results, published in 2009, provide
clinical evidence for the value and potential for long-term improvement of
overall survival (OS) of the autologous cancer vaccine ATV-NDV (72).
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An explanation for the basic mechanism behind this remarkable result was
offered in 2014 (49). It suggests that the vaccine was capable of reactivating
pre-existing cancer-reactive MTCs and that their persistence over the many
years prevented outgrowth of metastases.

BOX 13 2008 Retirement Symposium and Farewell Party

ii) THE NDV-MODIFIED DENDRITIC CELL VACCINE VOL-DC

After my official retirement at DKFZ (Heidelberg, Germany) in 2008, | was
not ready for general retirement. | wanted to continue to work on the topics |
was engaged with. Luckily, | found a proper place at the Immunological and
Oncological Center (10ZK) in Cologne, Germany. The CEO Dr W Stuecker and
clinical colleagues had established this unique Institution in 1985. Since 2005
they work with NDV, autologous tumor cells and patient-derived DCs.

Personalized medicine is a basic concept at 10ZK. It includes combinations
of anti-cancer vaccination with other treatment modalities, in particular with
local hyperthermia and with immune checkpoint inhibitors. The GMP
certificate obtained in 2015 includes NDV. This virus was produced
worldwide for the first time under the strict guidlines of Good Manufacturing
Procedures (GMP).

The vaccine VOL-DC which we developed at 10ZK can be considered a
second-generation vaccine following the first-generation vaccine ATV-NDV.
To use an oncolysate from ATV-NDV and pulse it onto DCs has two
advantages:

1. no irradiation step is necessary anymore to inactivate live tumor cells and

2. the replacement of live irradiated but viable tumor cells by DCs produces
another type of live cell vaccine which has the capacity of de novo generation
of TAA-specific cells from naive T cells.
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ili) MULTIMODAL INDIVIDUAL CANCER IMMUNOTHERAPY

The multimodal individual cancer immunotherapy performed at 10ZK
consists basically of two steps:

a) First step: immune monitoring and immune modulation/conditioning

Active specific immunization of cancer patients requires an immune system
which is competent and not dysregulated. Therefore, before patients at 10ZK
receive specific vaccinations, their immune system is assessed in depth and
modulated if required. Immune modulation/conditioning is done by
modulated Electrohyperthermia (mEHT) combined with systemic (i.v.)
application of NDV (73).

mEHT is used in such a way that the tissue temperature becomes elevated to
38,5 to 40,5° C. mEHT is applied either locally or systemically, depending on
the clinical situation. mEHT is combined with systemic oncolytic virotherapy
based on the observations that mEHT can enhance virus tumor targeting (74)
and virus replication (75). Viral infection of tumor cells and hyperthermia
with a radiofrequency of 13 MHz cause an Endoplasmatic Reticulum (ER)
stress response, modify the surface properties of tumor cells and induce
Immunogenic tumor Cell Death (ICD) mechanisms (76).

Systemic NDV application can have the following positive effects:
i) induction of IFN-0//B; this inhibits secretion of Th2 cytokines (IL-4 and
IL-5), stimulates Th1 cells and counteracts Treg cells (77),
ii) induction of ICD (76), and
iii) priming of viral oncolysate (VOL)-reactive T helper cells which can be

monitored by an in vitro ELISPOT assay (78).

b) Second step: Active-specific immunization with VOL-DC

The second step of this multimodality treatment consists of active-specific
autologous anti-tumor vaccination. The VOL-DC vaccine consists of patient-
derived DCs combined with viral oncolysate. Viral oncolysate (VOL) serves for
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DC programming, polarization and TAA information transfer. We decided to
use tumorlysate instead of defined TAAs to produce professional APCs based
on a number of pre-studies. These revealed

i) that tumorlysate can serve as a source of TAAs,
ii) that tumorlysate-pulsed DCs as APCs do not induce autoimmune reactivity

iii) that tumorlysate is physiologic and makes it unnecessary to purify TAAs.

To avoid a wrong polarization of T helper cell responses, we decided to
introduce so called “danger signals” into the DC vaccine by virus infection.
Upon loading of DCs with VOL, they become infected by NDV. The foreign
non-capped RNA in the cytoplasm of the infected DC is a Pathogen-Associated
Molecular Pattern (PAMP) that stimulates RIG-I receptors, induces a strong
type | IFN response and innate immunity (79). Further features of NDV relate
to the immune response:

i) up-regulation of MHC | molecules (80),

ii) activation of NK cells (27),

iii) activation of monocytes and macrophages (81,82),
iv) reprogramming and polarization of DCs (83),

v) costimulation of CD4+ (59) and CD8+ (84) T-cells.

10ZK has a GMP facility in which patient-derived tumor cells from operation
specimens are propagated in cell culture. Following NDV infection and viral
oncolysis, the material is freeze-thawed to become devoid of viable tumor
cells and then co-incubated with immature DCs from a short-term culture of a
sample of the patient’s white blood cells. After a further maturation step, the
vaccine is ready for intradermal application to the patient. The differentiation
process from adherent monocytes (CD14++,CD86+,CD209-,CD83-) via
semiadherent immature DCs (CD14+,CD86+,CD209++,CD83-) to floating
mature DCs (CD14-,CD86++,CD209+,CD83++) is followed by flow cytometry.
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Functional tests: A study with memory T cells from breast cancer patients
compared the stimulatory capacity of VOL-DCs to that of tumorlysate-pulsed
DCs. Stimulation with VOL-DCs showed increased expression of costimulatory
molecules and higher IFN-y ELISPOT responses. Supernatants from co-cultures
of MTCs and VOL-DCs contained increased titers of IFN-o and IL-15 (85). Thus,
VOL-DCs were superior to tumorlysate-pulsed DCs and potently stimulated
cancer-reactive MTCs from cancer patients.

c) Side effects of the multimodal immunotherapy at 10ZK

Most side effects were moderate (common cytotoxicity criteria grade 1-2)
with eventually short term flu-like symptoms (fever, headaches and chill).
There was no negative impact on quality of life.

d) Clinical results from single cases or case-series studies

Since 2005, more than 2000 cancer patients were treated with biological
therapies. Among these were more than 70 different types of cancer. In the
last two years there has been a steady increase of patients with GBM and
also of children with Diffuse Intrinsic Pontine Glioma (DIPG). This increase of
patients with GBM and DIPG is due to the recruitment of the Paediatric
Neurooncologist S van Gool from Leuven University (Belgium) who joined the
I0ZK in September 2015.

Children with DIPG have a 5-year survival rate of <1%. The median overall
survival of children diagnosed with DIPG is approximately 9 months. It is two
early yet to make a general statement about the effect in this fatal disease by
the immunotherapy exerted at 10ZK although we are optimistic to achieve an
improvement.

We can summarize new results from a retrospective case-series study of
adult GBM patients treated at 10ZK between 2006 and 2010. Median OS of 10
newly diagnosed operated patients was 30 months in comparison to 14.6
months after standard radio/chemotherapy according to the Stupp protocol.
The 5-year survival of primary operated GBM in the current series with
combinatorial immunotherapy is almost 20% (73).

In addition, we recently published two remarkable single cases. One
describes long-term remission of prostate cancer with extensive bone
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metastases (86), the other reports long-term survival of a breast cancer
patient with extensive liver metastases (78).

iv) NDV-TARGETED MULTISPECIFIC ADAPTER PROTEINS

Table 39 lists examples of such adapter proteins.
a) Improvement of tumor targeting

To improve the specificity of tumor targeting and to reduce side effects we
have developed in the past recombinant fusion proteins which bind with one
arm to the hemagglutinin-neuraminidase protein (HN) of NDV. Genetic
engineering allowed to clone vL and vH genes from an NDV neutralizing anti-
HN mab and to produce from these with the help of a linker a single chain Fv
(scFv) binding site (anti-HN). The fusion of a c-DNA coding for human IL-2
enabled the introduction of a new specific second binding site. IL-2 binds with
high affinity to the human IL-2 receptor o chain (IL-2Ra). This is expressed on
a variety of human HTLV-induced lymphomas. With such cell lines we
performed in vitro and thereafter in vivo proof-of-principle studies of tumor
retargeting of NDV. Tumor cell binding occurred through IL-2R and IL-2 of the
adapter protein attached to neutralized HN. It was reassuring that this new
bridge between the virus and the tumor cell allowed the F protein of NDV to
fuse with the tumor cell membrane so that virus infection and replication
could follow. The in vivo re-targeting experiments revealed that this approach
reduced the liver-toxic side effects of the virus upon high-dose application
(87).

b) ATV-NDV vaccine-attached adapter proteins: delivery of 3 T-cell activating
signals to produce TAA independent anti-tumor activity

We also produced a tri-specific fusion protein for T cell costimulation. It
contained an anti-HN binding site to attach to NDV infected vaccine cells (e.g.
ATV-NDV) and two further binding sites: anti-CD28 (for delivery of
costimulatory signal 2a) and IL-2 for targeting the IL-2 receptor (CD25, to
deliver a costimulatory signal 2b). In addition, we created the following

bispecific fusion proteins for T cell activation: anti-HN-anti-CD3 (for delivering
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signal 1) and anti-HN-anti-CD28 (for delivering costimulatory signal 2a). Each
binding site in the fusion proteins is monovalent and can as such not cause
receptor cross-linking and cell activation. This only occurs in the presence of
ATV-NDV vaccine cells, where multiple HN molecules in the plasma
membrane allow for aggregation of the fusion proteins, for cross-linking with
T cells and for T cell receptor or co-receptor aggregation and T cell activation.

The new fusion proteins were first tested in vitro. For this, we designed a so-
called tumor neutralization assay. It consists of a tumor cell monolayer. On
top of this cell culture we added human peripheral blood mononuclear cells
(PBMC) or purified T cells and tumor vaccine as stimulatory cells. The tumor
vaccine cells consisted of NDV-infected irradiated tumor cells with or without
attached above fusion proteins. The T cells could thus become non-
specifically activated by the combined signals exerted by NDV, anti-CD3 (1),
anti-CD28 (2a) and IL-2 (2b) (88-90).

It took about 3 days of co-culture for full T cell activation and 2 additional
days for destruction of the tumor monolayer. This non-specific anti-tumor
activity induced by the above signals was mediated by the activated T cells
themselves and by soluble factors secreted (91). Upon transfer of the
activated T cells to a second tumor monolayer, this was destroyed as well.
This procedure could be repeated for a period of about 10 days. The most
durable T cell response in this assay required all three activation signals (88).

Such TAA-independent T cell anti-tumor activity (91) may be very useful in
cases of tumor immune escape via loss of TAA expression.

c) ATV-NDV-attached anti-CD28 adapter protein causing strong costimulation
of TAA-specific anergized T cells in late-stage metastasized colorectal
carcinoma patients

In a pilot Phase | dose-escalation clinical study, 14 CRC patients with late-
stage disease, which could not be operated anymore with curative intent,
were treated with the vaccine ATV-NDV to which different amounts of the
adapter protein anti-HN-anti-CD28 were attached. No severe adverse events
were observed. With the highest dose of 1 g purified adapter protein, strong
T-cell costimulation occurred which enabled re-activation of possibly already
anergized TAA-specific MTCs (92). The study suggests that the three-
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component vaccine is safe and can reactivate TAA-specific T cells from
patients with advanced-stage cancer.

We are apparently worldwide the first and, so far, only group who has
developed bispecific antibodies and trispecific immunocytokines for
attachment to a universal anchor molecule of an oncolytic virus. The
advantages of this concept for the future have been summarized (93). The
following summary includes new strategic thoughts for the future.

1. A viral molecule, such as HN of NDV, can serve as a universal anchor or
attachment molecule of an infected tumor cell.

2. A bispecific single chain antibody (bsab) such as anti-HN-anti-CD28 can be
added to a ATV-NDV type tumor vaccine in a defined dose (89) to augment T
cell costimulatory signals; in this way, T-cell co-stimulatory molecules can be
attached to any type of tumor cell infectable by NDV.

3. If the vaccine cells express autologous TAAs and the patient’s immune
system is already tolerant (anergic) towards these, the addition to the vaccine
of anti-HN-anti-CD28 can overcome this anergy (92). It is possible that an
intensification of both signals (1 and 2), could break T cell anergy towards
TAAs even more efficiently.

4. A tumor cell without TAAs can be infected by an OV and modified with
two adapter proteins to deliver signal 1 and 2. This suffices to activate naive T
cells. Anti-HN-anti-CD3 bsab delivers TCR-complex mediated signal 1 and the
addition of anti-HN-anti-CD28 or anti-HN-IL-2-anti-CD28  delivers co-
stimulatory signals 2a and 2b (89,90); signal intensity by this modular
approach mediated through CD3, CD25 or CD28 can be adapted to the clinical
situation by varying the amount of the respective adapter protein.

5. A vaccine modified according to 4. can induce in naive T cells strong anti-
tumor activity that can be quantified in a tumor neutralization assay (TNA) in
vitro (88).

6. When IL-2 is incorporated into a bsab construct such as anti-HN-anti-CD28,
a trispecific immunocytokine (anti-HN-IL-2-anti-CD28) is being created. The IL-
2 in this construct confers costimulatory signals (2b) through CD25 (89,90).
Such trispecific immunocytokine modified ATV-NDV stimulates naive T cells
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to destroy tumor cell monolayers upon successive transfers for about 10 days
(89).

7. A patient’s T cells , e.g. from PBMC, activated ex vivo according to 6. can
be re-infused to the patient for adoptive T-cell immunotherapy.

8. Before transfer to the patient, the activated T-cells can be further loaded
with oncolytic NDV (48). The loosely attached NDV would be hitchhiking
through the patient’s blood on its T cells to be carried into the tumor tissue.
Upon arrival there, some of the virus could become released and, in contact
with tumor cells, would be capable to infect these. This would intensify the
anti-tumor activity exerted through the activated T cells themselves. Such a
scenario of tumor attack through activated T cells loaded with oncolytic NDV
has already been observed and studied in vitro (48).

9. In addition or alternatively, the patient’s bone marrow derived memory T
cells could be stimulated in a TAA-specific way by ATV-NDV vaccine without
adapter proteins in a short-term memory re-stimulation assay (2-3 days).
Such MTCs could similarly be loaded with oncolytic NDV before adoptive
transfer to the patient. These re-activated MTCs would target even better to
the tumor tissue, release their NDV for tumor cell cross-infection, and attack
the tumor via specific CTL activity. Another advantage of this strategy would
be the likelihood of co-transfer of stem-like MTCs with their long-lasting
memory function (see Chapter IV).

v) MULTIMODAL CANCER THERAPY INVOLVING NDV, AUTOLOGOUS IMMUNE
CELLS AND TRI-SPECIFIC ANTIBODIES

a) This new concept has been described recently (94).

The basic idea is that of cancer pre-targeting by on oncolytic virus which is
followed by transfer of immune cells which are loaded with tri-specific scFv
antibodies. These bind with two binding sites (second and third) to the
immune cells and direct the first binding site towards a viral antigen of the
OV used for pre-targeting.

Table 40 lists examples from the patent (see below) of potential targets of
future tri-specific adapter proteins. The autologous immune cells can be T
cells or DCs. The T cells could be isolated from the peripheral blood or from
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bone marrow and could contain naive as well as memory T cells. These cells
could be pre-activated or not. The DCs could also be isolated from the
peripheral blood or from bone marrow (95) and they also could be pre-
activated, loaded with tumor lysate or defined TAAs and polarized towards
DC1. The target molecules on these immune cells for the tri-specific adapter
proteins are listed in Table 39 and include CD differentiation antigens and
growth factor receptors, cytokine receptors and interferon receptors.

Two binding sites of the adapter molecule should bind to the cell surface
molecules of the immune cells in order to achieve an affinity and stability
sufficient for achieving the virus targeting during the adoptive cell transfer.

b) “Multi-modal cancer therapy using viral hitch-hiking”

This is the title of the US Patent No. US 8,142,791 B2 granted Mar. 27, 2012.
It is also the title of the European Patent No. EP 2091972 granted Jan. 13,
2016. The patents belong to W Stiicker and V Schirrmacher.

The idea behind the Patent is a multi-step procedure to target T cells and/or
DCs to the site of a tumor: 1. Pre-condition the tumor microenvironment, for
instance by local hyperthermia, 2. Target the tumor with oncolytic NDV by
local or systemic virus application or by virus hitch-hiking, 3. Load the
patient’s T cells or DCs with tri-specific adapter proteins in such a way that
two binding sites are directed towards the T-cell or DC and that the third site
(anti-HN or anti-F) remains free, 4. Re-infuse the loaded cells systemically into
the patient so that the virus-specific binding sites can dock to the viral
antigens at the virus-infected tumor site.

OVs, tumor cells and adapter proteins allow for a multitude of new clinical
applications. The example presented with NDV and NDV-specific adapter
proteins can be transferred to other OVs. It should be of advantage to a
pharmaceutical company that develops OVs to also develop OV-specific
adapter proteins. They can then be used to improve virus to tumor targeting
and immune stimulation, in particular stimulation of anergized anti-tumor T
cells. They could also serve to improve recruitment of cells to the site of the
virus-infected tumor cell, for instance DCs. OV hitchhiking on other cells could
improve the efficacy of tumor targeting. This could be followed by targeting
ex vivo activated immune cells via trispecific adapter proteins.
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vi) NDV HN AND F PLASMID DNA FOR IMPROVING ANTI-TUMOR
VACCINATION

Table 41 lists the use of plasmid vaccines with genes from an OV to improve
innate immunity activation. Plasmids coding for HN or F of NDV served not
only this purpose but also the purpose of better understanding structure-
function relationships.

The crystallization of the F protein in 2001 has been important for structural
studies. Electron microscopic imaging showed the FO'product to consist of
club-shaped particles. Trypsin treatment produced disulfide-linked F2 and
F1'chains. These showed extensive rosette-like aggregation, indicative of a
conformational change (96).

Studies with pHN or pF transfected cells allowed to better understand the
function of these two viral spike proteins. HN showed a fusion promoting
activity towards F resulting in syncytia formation (97). HN but not F was
capable of paracrine activation of an IFN-a response in human PBMC and to
induce upregulation of TRAIL (25). HN also was found to determine viral
tropism and virulence (98).

pHN plasmids were also tested for their ability to function as molecular
adjuvant within an anti-tumor DNA vaccine. We combined these studies with
our experience of mouse ear pinna vaccination. Since the ear pinna is rich in
DCs we further tried to target the anti-tumor DNA vaccine to DCs via
incorporation of a short CD1lc promoter sequence which we had just
identified (99).

The studies revealed that pHN can indeed serve as a powerful molecular

adjuvant in triggering IFN-o0 and innate anti-tumor immunity (100). Such
immune-stimulatory activity in the ear pinna reduced tumor growth and
caused changes in the immune cell compartment of the microenvironment of
an intradermally growing transplanted mammary carcinoma: a significant
increase in NK-cell infiltration and a decrease of infiltration by MDSC
suppressor cells (101). The studies highlight the potential adjuvant activity of
the HN gene of NDV.

A pHN plasmid was also used for therapeutic targeting of liver cancer. A

total of about 38.6 million mortalities occur due to liver cancer annually,
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worldwide. Gene therapy is considered a promising option. A recent study,
investigated the synergistic effects of the abilities of the HN protein of NDV,
the pro-apoptotic factor apoptin from chicken anemia virus, VP3 and the
interferon-y inducer interleukin-18 (IL-18) in antagonizing liver cancer in a
murine model. The results revealed that the recombinant DNA vaccine
containing HN, VP3 and IL-18 genes inhibited cell proliferation and induced
autophagy via the mitochondrial pathway in vivo and in vitro in H22
hepatoma (102).

Chapter V

Key points:

1. Milestones from virology research with relevance to cancer include the
identification of tumor-causing viruses (e.g. RSV, HCV, HPV) as well as the
discovery of viruses with oncolytic (tumor destroying) potential (e.g. HSV,
HAdV, NDV).

2. Tumors and viruses share the ability to develop escape mechanisms from
immune recognition and control. Molecular studies revealed the mechanisms
behind such escape mechanisms and paved the way for the development of
strategies to overcome and break such resistance mechanisms. Genetic
modification of oncolytic viruses (OVs) is one way towards such a goal.

3. OV-modified anti-cancer vaccines have been developed starting with
oncolysate vaccines, followed later with live infected tumor cells (e.g. ATV-
NDV) and continued with oncolysate-pulsed dendritic cells (e.g. VOL-DC).
Clinical studies with such vaccines, performed for now over 50 years in case
of NDV, have shown promising results in the absence of severe side effects.

4. Bi-specific OV targeted adapter proteins can be used to improve the
immunogenicity of OV infected tumor cells. They can bridge immune cells,
deliver signals to them and thereby modulate their activity.

5. Tri-specific adapter proteins, binding with one arm to an oncolytic virus

(OV) and with the other arms to distinct targets on T cells and/or DCs can
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provide bridges between the tumor and its host’s immune cells. Such
reagents can improve tumor targeting of immune cells.

5. DNA plasmids may incorporate genes from OVs to improve innate
immunity activation.
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Table 32 Milestones from virology with relevance to cancer

1965 WA Cassel: NDV as antineoplastic agent, virol oncolysis
and post-oncolytic immunity
1966 FP Rous*: Rouse Sarcoma Virus (RSV), a tumor generating virus
1967 BS Blumberg: Discovery of Hepatitis B virus (HBV)
1969 M Delbriick*, AD Hershey* and SE Luria*: Virus replication cycle;
Genetic structure of viruses

1974 J Lindenmann: Viruses as immunological adjuvants in cancer;
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Interferon as antiviral agent

1975 D Baltimore*, R Dulbecco* and HM Temin*: Tumor viruses and their
interaction with host cell DNA

1991 RL Martuza: Virus genomes engineered to enhance anti-tumor
specificity

2008 H zur Hausen*: Identification of Human Papillomaviruses (HPV) and
their role in cervical cancer
F Barré-Sinoussi*, L Montagnier*: Identification of HIV as causing agent
of AIDS

2015 SW van Gool: Immunogenic cell death (ICD) as mechanism of oncolysis

induced by NDV

* Nobel Laureats

Table 33 Examples of Oncolytic Viruses

Virus family Virus Species of origin
Herpesviridae HSV-1 human
Adenoviridae HAdV human
Paramyxoviridae MeV human

“ NDV bird
Rhabdoviridae A cattle
Picornaviridae CVA human
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“ PV human

“ Svv cow
Poxviridae \'AY cow
Reoviridae mORV human
Retroviridae MulLVv mouse

Table 34 Immune escape mechanisms by Tumors and OVs

Tumors

- Escape from type |l interferon, e.g. reduced and/or delayed
RIG-I, TLR or IFNRq. signaling induced response

- Production of immunosuppressive cytokines, e.g. TGFB, IL-10

- Recruitment of inhibitory cells, e.g. Treg or MDSCs

- Upregulation or secretion of PD-L1 to deliver a negative signal to PD-1* TILs

- Downregulation of TAAs and/or MHC molecules

- Constitutive expression of IDO, tryptophane shortage, T cell proliferation

arrest
Oncolytic viruses immune escape mediating proteins:
VSV matrix protein
Influenza virus NS1 protein
Paramyxoviruses V and C proteins
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HSV v34.5 protein

Adenovirus E1 and E3 region encoded proteins

IDO indolamine-2,3-dioxygenase; IFNRa o chain of the type | interferon
receptor; IL-10 interleukin 10; MDSC myeloid-derived suppressor cell; MHC
major histocompatibility complex; RIG-1 retinoic acid-inducible gene I; TAA
tumor-associated antigen; TGFR cytokine promoting tissue repair; TLR toll-
like receptor; Treg regulatory T cell

Table 35 Concepts of application of OVs

Intratumoral inoculation
Locoregional treatment: intra-nasal, intraportal route, hepatic arterial
infusion, intraperitoneal application

Systemic intravenous application
Combining OVs with carrier cells for improving tumor targeting
Combining OVs with bispecific antibodies for improving tumor targeting
For anti-tumor vaccination in combination with TAAs:

- oncolysate vaccines

- live tumor cell infection, ATV-NDV vaccine

- oncolysate-pulsed DCs, VOL-DC vaccine
Combinatorial treatments:

- systemic OV plus local hyperthermia for immune conditioning
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Table 36 GBM- targeted therapy by oncolytic NDV

Apoptosis pathways
Intrinsic
Extrinsic
Cell cycle arrest pathways
ER stress, transcription inhibition
Interaction with Racl to induce syncytium formation
Cellular actin reorganization, denaturation of actin cytoskeleton
Racl signalling
Regulation of gene transcription and G1 cell cycle progression
Contributor to cell survival
Key regulator of cell migration and invasion
Activation of matrix metalloproteinases
Dynamic state of the actin cytoskeleton
Lamellipodia formation
RIG-I and IFNRa signaling pathways
Early-phase anti-viral response (IFN-B, IRF3, IRF7)

Late-phase anti-viral response (JAK1, Tyk2, STAT1, STAT2, IRF9, ISGF3)
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Table 37 Milestones in modern development of oncolytic
virotherapy

1991 Genetically engineered HSV mutant with reduced neurotoxicity
1997 Targeting HSV for hepatoma using albumin promoter/enhancer
1998 AdV with CD and HSV-Tk for prodrug activation (5-FU+GCV)
1999 Addition of cyclophosphamide to HSV for immune suppression
2001 HSV encoding IL-12 and GM-CSF for T cell recruitment + immune
stimulation
2004 MeV encoding NIS which concentrates beta-emitting (radiovirotherapy)
and gamma-emitting isotopes (imaging)
2005 MeV with ScFv antibody targeting virus entry and cytopathic effects
2006 Use of cell carriers (CIK cells) to deliver VV to tumor;
AdV with relaxin protein to enhance virus intratumoral spread
2008 Polymer coating and retargeting of AdV for ovarian cancer to
enhance viral pharmacokinetics;
MicroRNA targeting to control unwanted toxicity of picornavirus
and VSV
2009 Clinical Phase Il trial with intralesional HSV in melanoma patients
2011 Delivery of infectious nucleic acid via picornavirus to achieve sustained
viremia and tumor regression;
Viremic Threshold: Intravenous delivery of VV in metastatic patients
2015 GMP certificate for IOZK: VOL-DC
T-VEC: First OV approved for melanoma immunotherapy

2017 Review of the efficacy and safety of T-VEC
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Table 38 Genetic modification of oncolytic NDV for cancer therapy

PMID

2007 rNDV-GM-CSF 17914407

2008 rNDV-IL-2 18813797 and 18538434

rNDV-IL-2 + rINDV-TAA

18714310

rNDV-Ig(vL)-Ig(vH) (mab against angiogenesis) 18200068

2009 rNDV-NS1 (interferon antagonist) 19209145
2010 rNDV-F3aa 19809404
2012 rNDV-apoptin 21865658
2013 rNDV-cytosine deaminase 24460323

rNDV-F with PSA cleavable site (prostate Ca specific) 23345509
2014 rNDV-IL2-TRAIL

24971746
2015 rNDV-Fas 25761895

rNDV-anti-CD147(TAA) 26689432
2016 rNDV-p53 27465066
2017 rNDV-IL-15 28286036

rNDV-ICOSL 28194010
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Table 39 NDV-related multispecific adapter proteins

Adapter proteins PMID
2005 anti-HN-IL2 for tumor targeted gene transfer in vitro 16010418
“ in vivo 15645128
anti-HN-anti-CD28 and anti-HN-anti-CD3 in vitro 1575830
2006 NDV-anti-HN-IL2 in vivo, reduced liver toxicity 17088973

2011 Targeting IL2 and GM-CSF immunocytokines to the tumor
vaccine ATV-NDV 2142118
2013 Bispecific and trispecific adapter proteins for targeting 23329400

the immune system against cancer: preparing for the future

Table 40 Examples of targets of tri-specific adapter proteins

First binding site  Second binding site Third binding site

Tcells DCs
NDV HN IL-2, IL-12, IL-15, CD2, CD25, CD1a, CD11c
NDV F GM-CSF, TNF, IFN-o CD28, CD107a, CD40, CD80

CD122,CD132  CD83, CD86
CD247, CD3 IFNAR1,

CD197,
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CD205

CD209

For further details see patents US 8,142,791 B1 (2012) and EP 2 091 972
(2016)

Table 41 Oncolytic viral gene plasmid DNA vaccines or vaccine adjuvans

pHN and pF DNA plasmids and NDV subjunit vaccines PMID

2001 Cloning, expression, and crystallization of F of NDV 11883193
2002 Induction of IFN-ot and TRAIL in PBMC by NDV HN but not F 12083832
2004 Syncytia forming activity of F and fusion promoting activity

of HN molecules at the cell surface; 15254725

HN of NDV determines tropism and virulence 15047833
2009 Targeting anti-tumor DNA vaccines to DCs via a short

CD11c promoter sequence 19616491
2010 HN as a powerful molecular adjuvant 20709006
2011 Triggering innate anti-tumor immunity by pHN application 21172381

2016 Targeting liver cancer with pHN-apoptin-IL18 27900002

193



CHAPTER VI. COMBINING BIOLOGICAL THERAPIES WITH

STANDARD THERAPIES

A. COMBINING OVs WITH PHARMACOLOGICAL MODULATION
AND/OR CHEMOTHERAPY

Administration of OVs alone, as monotherapy, rarely induces successful
regression of established tumors. Therefore, various strategies have been
used to improve therapeutic effects involving OVs. In the previous Chapter,
various concepts of combining OVs with immunotherapies have been
presented: To use OVs within a tumor vaccine for augmenting their
immunogenicity or to combine OVs with hyperthermia for immune
conditioning.

In this Chapter, we discuss possibilities of combining OVs with drugs that
can cause immunomodulatory systemic effects. This survey is based on two
recent reviews (1,2).

Table 42 lists challenges of combinations of OVs with Drugs.

The challenges to be solved are the following: Cancers and OVs use similar
pathways to either become increasingly malignant or to support virus
replication and spread: These are, for instance, defects in the IFN pathway,
apoptotic resistence, immune suppression and angiogenesis or virus spread
via leaky tumor vasculature. Combination strategies have to be aware of
conflicting mechanisms:

i) apoptosis inducing drugs might reduce virus replication,
ii) anti-angiogenic drugs might reduce virus spreading and
iii) immunosuppressive drugs might increase viral replication but decrease

induction of adaptive anti-tumor immune mechanisms.
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The challenge thus is, how to keep a right balance between these conflicting
mechanisms.

As described in the previous Chapter, OVs are self-amplifying
biotherapeutics with tumor selectivity of virus replication and toxicity. OVs
exploit cancer-associated cellular defects arising from genetic alterations and
epigenetic reprograming (3). Such cellular defects lead to dysfunctional anti-
viral responses by tumor cells and immune evasion, increased cell
proliferation and metabolism, and leaky tumor vasculature (4).

Most patients enrolled in clinical trials to test the efficacy of OVs suffer from
advanced disease and are therefore subjected to some form of
chemotherapy. While the evaluation of chemotherapeutic drugs in the
context of OV therapy has been fairly empirical, their immunosuppressive
effects can inherently support OV activity by increasing OV spread within the
tumor and/or increase anti-tumor immune responses.

Table 43 lists examples of combinations of OVs with Drugs.
i) COMBINING OVs WITH CHECKPOINT INHIBITORS

The first drug in the list is ipilimumab, a monoclonal antibody neutralizing
negative signals through the T-cell inhibitory receptor CTLA-4. During normal
immune responses, T cell checkpoint inhibitors such as CTLA-4 and PD-1
prevent over-reactive T-cell responses. These could otherwise lead to harmful
tissue damage. In tumor tissue, tumor-infiltrating lymphocytes (TILs) are
often inhibited by negative signals mediated via CTLA-4/CD80(86) and/or PD-
1/PD-1L stimulation. As a result, T cell anergy is a major barrier to immune-
mediated tumor recognition and rejection. Ipilimumab application stops such
negative signals and leads to increases of T-cell immune responses.

The first OV that was successfully tested in vivo for combination therapy was
NDV. Murine B16 melanomas were first treated by intra-tumoral inoculation
of the virus which was followed by ipilimumab treatment. The combination
therapy of NDV and anti-CTLA-4 led to nearly 70% cures compared to 20%
cures for ipilimumab alone and no effect of OV on its own. Combining
localized NDV treatment with systemic CTLA-4 blockade led to rejection of
pre-established distant tumors and protection from tumor re-challenge in
poorly immunogenic tumor models. The therapeutic effect was associated
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with activated CD8+ and CD4+ TiLs but not Tregs and was dependent on CD8+
T-cells, NK-cells and type | IFN (5).

Clinical benefit of checkpoint blocking antibodies appears to be limited to
subsets of patients with pre-existing lymphocytic infiltrations of their tumors.
A successful rational combination would consist of localized oncolytic
virotherapy followed by systemic checkpoint blocking immunotherapy. Intra-
tumoral application of NDV to B16 melanoma in mice induced lymphocytic
infiltrates not only locally, but also in distant non-injected lesions.

Meanwhile, first results of such combinations are coming in from clinical
studies. In one study from 2016, the oncolytic virus T-VEC (Talimogene
laherparepvec) was combined with ipilimumab in previously untreated,
unresectable stage Il1IB-IV melanoma. After 18 months, the progression-free
survival (PFS) was 50% and OS 67%. The combination appeared to have
greater efficacy than either T-VEC or ipilimumab monotherapy. However,
grade 3/4 treatment-related adverse events (AEs) were seen in 26,3% of
patients. Both agents contributed to the AEs (6).

The authors were satisfied that no dose-limiting toxicities occurred and
concluded that this combination showed “a tolerable safety profile” (6).

Defining effective combinations of immune checkpoint blockade and
oncolytic virotherapy is important. A period of oncolytic viral replication and
directed targeting of the immune response against the tumor were required
for the most beneficial effects, with CD8+ and NK, but not CD4+ T-cells
mediating the effects (7).

ii) COMBINING OVs WITH DNA ALKYLATING DRUGS

a) Cyclophosphamide (CPA): CPA is a nitrogen mustard alkylating agent that
leads to cross-linking of nucleotides. Its active metabolite, phosphoramide
mustard, interferes with DNA replication by forming guanine-to-guanine
intra-strand and inter-strand crosslinks (8). CPA has been used in combination
with several OVs including HSV-1 (9), adenovirus (10), vaccinia virus, reovirus
(11), measles and vesicular stomatitis virus, leading to improved anti-tumor
activity in vivo (1).
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Several studies suggest that CPA can be efficacious by preventing immune-
mediated viral neutralization. Other studies suggest that CPA can also
enhance the generation of anti-tumor immunity by inhibiting Tregs (10,11).
The best progression-free survival and OS rates were seen with a combination
of low-dose metronomic CPA and intratumoral infection by gene-modified
adenovirus Ad-GM-CSF (10).

b) Temozolomide (TMZ, temodal): TMZ is an alkylating agent that leads to
alkylation/methylation of DNA. It has demonstrated clinical benefits in
patients with GBM (12) and advanced metastatic melanoma (13). At higher
doses, TMZ can be myeloablative. Oncolytic HSV (14,15) and AdV (16) have
been tested in combination with TMZ. In one study, using Ad5/3-D24-GM-CSF
with or without low-dose CPA to reduce Tregs, co-treatment with TMZ
increased tumor cell autophagy, anti-tumor immunity, and reduced tumor
burden (17).

iii) COMBINING OVs WITH INHIBITION OF DNA REPLICATION

Gemcitabine is a fluorinated deoxycytidine nucleoside analog. Incorporation
of this analog into DNA prevents further addition of nucleosides during DNA
polymerization and thereby halts DNA replication and cell division. It is
thought to promote anti-tumor immune responses by elimination of MDSCs
which suppress T-cell responses.

This drug has been shown to increase the anti-tumor activity of adenovirus,
parvovirus, reovirus, VSV, HSV (18), vaccinia and myxoma virus. No such
effects occurred in immune-compromised mice, thus corroborating the
assumption that a virus-triggered anti-tumor immune response was
mediating the combination effect.

A phase | study of the combination of intravenous reovirus and gemcitabine
in 16 patients with advanced cancer revealed

i) adecrease of neutralizing anti-reovirus antibodies,

ii) in 80% of evaluable patients a partial response or stable disease, and

iii) a potential interaction between reovirus and gemcitabine in causing liver
enzyme rises ( 19).
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iv) COMBINING OVs WITH EPIGENETIC MODULATORS

Many enzymes that are involved in epigenetic regulation are deregulated in
cancer. Transformed cells often have defective IFN signaling pathways. It has
been estimated that about three quarters of tumor cell lines within the NCI60
panel have defective IFN responses (20). Dysfunctional IFN pathways in
cancers are often due to epigenetic silencing including DNA promoter
hypermethylation and transcriptionally suppressive histone modifications (1).
Manipulation of the cancer epigenome using small molecules has been
explored successfully as a treatment modality for cancer. Transcriptional
activation of interferon-stimulated genes (ISGs), which are often
epigenetically silenced, requires histone deacetylase (HDAC) activity (21).

HDAC inhibitors (HDIs) include, among others, valproic acid (VPA) and
trichostatin A (TSA). These have been used in combination with OVs to
effectively “reprogram” IFN-responsive tumors to become permissive to OV
infection. HDIs enhanced HSV oncolysis in oral squamous carcinoma cells (22)
and in gliomas (23). This was attributed to an inhibition of virally induced I1SG
expression (24). The combination of HSV with HDIs led to prolonged survival
in murine tumor models (23,24).

HDIs possibly have additional immunomodulatory properties. Striking
effects of HDIs have been observed in the context of a heterologous oncolytic
prime-boost strategy (25). It was reported that HDIs caused suppression of
primary immune responses, enhancement of secondary immune responses,
and abrogation of autoimmunity during tumor immunotherapy (25). In this
respective study, mice with syngeneic B16 melanoma brain tumors were first
primed with an oncolytic adenovirus expressing a TAA which was
overexpressed in B16 and then treated with oncolytic VSV expressing the
same TAA. The HDI MS-275 was given along with the VSV boost.

5-AZA-2'-deoxycytidine (5-AZA) is a DNA methyltransferase inhibitor that
prevents DNA methylation and allows silenced DNA to regain accessibility to
transcription factors. In addition to histone acetylation-mediated gene
silencing, ISGs and other genes implicit in the IFN-mediated anti-viral
response are often silenced in cancers by DNA hypermethylation at CpG
islands in their promoter regions (1). 5-AZA could be successfully combined
with oncolytic HSV rQNestin34.5. It de-repressed transcription under control
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of the Nestin promoter, allowing viral gene expression, increased viral
replication, and HSV-mediated glioma cell killing. An increase in survival was
observed in glioma bearing mice when treated with the OV and 5-AZA,
compared to either treatment administered alone (26).

As mentioned in Chapter Il, 5-AZA had been found by K Bosslet, my first PhD
student, to be capable in vitro to de-repress expression of a TAA recognized
by specific CTLs from a TAA negative tumor immune escape variants (27). In
another study (28), 5-AZA had induced with high frequency heritable but
phenotypically unstable changes in the tumorigenic and metastatic properties
of tumor cells.

v) COMBINING OVs WITH PI3K/AKT/mTOR PATHWAY INHIBITORS

The PI3K pathway is critical to apoptosis/cell survival signaling in response
to stress. Genetic mutations in cancers often affect the PI3K pathway
resulting in dysfunctional apoptotic responses and pro-survival signaling (29).
Various stress signals, including IFN-¢,, activate PI3K thereby triggering a
signaling cascade leading to phosphorylation of Akt. This then activates
another kinase which phosphorylates cellular factors involved in cell survival
and proliferation, such as NF-xB. The latter is also involved in inducing the
type | IFN cascade.

In combination with HSV MG18L, the PI3K inhibitors LY294002, GDC-0941
and BEZ235 acted synergistically to induce apoptosis in glioblastoma stem
cells (30). Combination therapy resulted in durable cures in mice bearing
GBM tumors, surpassing the efficacy of either therapy administered alone
(30).

A master regulator of cellular translation is mammalian target of rapamycin
(mTOR). Its position in the cell is downstream of PI3K and Akt signaling.
mTOR controls translation of a number of cellular mRNAs and can also impact
translation of viral proteins. Evidence suggests that mTOR can control the
anti-viral response by regulating translation of IFN and other key mediators of
anti-viral responses such as IRF-7 (31). Several OVs, including HSV, VSV, AdV
and myxoma virus have been tested in combination with the well-known
immunosuppressant rapamycin (32). Reduction of levels of antibodies
generated against the viruses was observed (33). In several rodent models of
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cancer, improvements of OV activity via combination with rapamycin were
reported (32).

vi) COMBINING OVs WITH PROTEASOME INHIBITORS

Bortezomib is a proteasome inhibitor approved to treat multiple myeloma
(MM) and mantle cell lymphoma. It binds reversibly the catalytic site of the
26S proteasome with high affinity and specificity (34). Bortezomib may Kkill
cancer cells through ER-stress and activation of the unfolded protein
response (UPR) (35). Some studies showed that bortezomib can increase
surface expression of HSP90 and HSP60 in cancer cells leading to more
effective phagocytosis by DCs (36).

In combination with nTERT-Ad virus, bortezomib enhanced infection-
induced ER-stress and activated the UPR and UPR-associated apoptotic cell
death in vitro (37). In vivo, bortezomib focused the immune response towards
TAAs by inhibiting immune recognition of the virus. Bortezomib's efficacy in
these subcutaneous hepatocellular carcinoma models was dependent on a
functional CD8+ T-cell response (37).

vii) COMBINING OVs WITH IMMUNOMODULATORY DRUGS

A high-throughput screen was performed using oncolytic VSV dM51 in a
virus resistant murine breast cancer cell line. One of the molecules identified
as “viral sensitizers” was VSel. It boosted viral replication up to 1000-fold and
synergistically with the virus increased tumor cell killing. I1SGs typically
triggered upon VSV infection remained silenced in cells pre-treated with
VSel. In a murine colon carcinoma model refractory to VSVdM51, VSel
potentiated OV activity leading to delayed tumor progression, while the virus
alone or VSel alone had no anti-cancer effects (38).

Triptolide (TPL) is a naturally derived component of the Chinese herb
Tripterygium wilfordii. It has been used as an anti-inflammatory remedy with
also anti-cancer properties. TPL is a global transcription inhibitor and has
multiple effects including the inhibition of RNA polymerase Il and the
expression of genes involved in apoptosis and NFxB signaling (39). TPL also
suppresses IFN signaling downstream of IRF3 (40). The combination of VSV
and TPL synergistically improved GBM tumor specific virus replication leading
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to prolonged survival and delayed tumor progression compared to either
therapy given alone (40).

Sunitinib is a small molecule oral drug with multi-targeted receptor-tyrosine
kinase (RTK) inhibitor. It was approved by the FDA in 2006 for the treatment
of metastatic renal cell carcinoma (RCC) and of gastrointestinal stromal
tumors (GIST). The RTKs targeted by sunitinib include PDGF-R, VEGF-R, KIT
(CD117), RET, CSF-1R, and FLT3. Sunitinib was also shown to have off-target
effects that block effector proteins of the IFN signaling pathway such as
RNaseL and PKR (41). VSV, reovirus and vaccinia virus (VV) have been
evaluated in combination with sunitinib (42-44). In the VSV study, sunitinib
decreased phosphorylation of the PKR substrate elF2-¢, leading to increased
viral titers in vitro. Combination therapy resulted in complete and sustained
tumor regression in several immune-deficient and immune-competent mouse
tumor models (43).

In conclusion, various drugs have been demonstrated to be able to break
immune tolerance and to facilitate OV-mediated immunotherapy of cancer.
Ipilimumab can break tumor-induced immune checkpoint control, CPA or
gemcitabine can selectively deplete Tregs. Other drugs can affect the cytokine
network around the tumor or deplete MDSCs. Successful therapy using OVs
will depend on the context (e.g. tumor type, tumor site) and on navigating
the delicate balance between the anti-viral reponse and the anti-tumor
response.

B. CHEMOTHERAPY-ENHANCED RADIATION THERAPY

Chemotherapy-enhanced radiation therapy (CERT) is a new term derived
from trials of the combination of CT and RT for head and neck cancer (45).
Multiple trials in patients with disease across sites have meanwhile
demonstrated that concurrent chemoradiation therapy can improve local
control and therefore disease-free survival, although distant metastatic
disease is not generally affected. Improved physical targeting with X-rays and
protons in concert with this novel approach of sensitization holds great
promise for future improvements in cancer therapy.

C. THE HORMESIS EFFECT
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Hormesis has been termed a biological principal, which is of interest not
only for toxicologists. It describes a dose-response relationship to stressors
with a low dose stimulation and a high dose inhibition. It was shown, for
instance, by testing the effect of the carcinogen dioxin on the development of
breast cancer in rats: In a low-dose region (0,001 um/Kg/day), the frequency
of tumors was greatly reduced compared to no dioxin or to a dose of 0,1

um/Kg/day).

Also, when testing the dose-response curve of chemotherapeutics,
antibiotics, non-steroidal inhibitors of inflammation (NSAIDs) or toxins it
showed a U-curve with a reduction of their toxic side effects at the nadir.
Calabrese and Baldwin (46) observed that whole-body irradiation with
Rontgen rays in the low dose range (0,5 — 2 Gy) leads to the activation of the
immune system.

D. COMBINING LOW DOSE IRRADIATION AND IMMUNOTHERAPY

Another strategy that recently received much attention is the combination
of a biological therapy with low dose irradiation. Let us therefore consider
first what is known about the molecular basis of radiation therapy. This
description is based on EJ Hall (47).

Radiobiology research has resulted in duistinguishing for R’s:
i) repair,
ii) redistribution,
iii) reoxygenation, and
iv) repopulation.

To escape cell death after radiation, tumor cells use DNA repair (i) and
repopulation of the tumor, presumably by resistant cells (iv). Conversely,
tumor cell kill by radiation is improved through the redistribution of tumor
cells, such that a greater proportion is in a more radiosensitive stage of the
cell cycle (ii) and through the reoxygenation of previously hypoxic and
therefore radioresistant cells (iii).
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A fifth R of radiobiology has been suggested, namely molecular regulation.
Molecular research revealed that genomic, message, and proteomic effectors

in both tumor and stromal cells clearly regulate the other four R’s.
i) DNA repair (48): This includes several distinct mechanisms:

a) Base-excision repair (BER),

b) Nucleotide-excision repair (NER),

c) Recombinational repair, and

d) Mismatch repair.

Molecular regulators of repair are distinct for each type of repair process.
Key examples include ATM, Rad51, BRCA, Ku proteins, DNA-PK, and g-
phospho-H2AX.

iv) Repopulation (47): Molecular regulators of repopulation involve regulators
of stem cell survival/self-renewal such as Wnt, Notch, Sonic Hedgehog and
Bmi.

ii) Redistribution (47): In an unsynchronized population of cells as tumors are,
cells in late S-phase are most resistant to radiation. After radiation, cells
accumulate in the G2/M phase, when they are most sensitive to radiation.
Therefore, cells that are not damaged after one dose of radiation may
redistribute into a more sensitive G2/M phase where they are more
susceptible to the next dose. Key proteins involved in cell cycle regulation
include cyclins, cdks, p53 and p21.

iii) Reoxygenation (47): Hypoxic cells are less sensitive to radiation. Oxygen is
thought to make the damage caused by free radicals permanent, thereby
making the cells more sensitive to radiation: By killing the outermost layer of
cells that are closest to the blood supply and therefore the best oxygenated,
the inner cells become closer to the blood supply and become more sensitive
to the next fraction of radiation. This process is repeated after each fraction
of radiation. Candidate molecular regulators involved in this process include
HIF-1¢, VEGF, NO, and bFGF.

v) Molecular regulation (47): This mode controls all four mechanisms of

radiobiology. This involves complex signaling processes that differ by cell
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type, cell context, radiation dose, and radiation energy that govern the
cellular response to radiation. Molecular regulation distinguishes between
low-dose genes which are upregulated upon radiation doses between 1 and
10 cGy and high-dose genes which are upregulated upon radiation doses
between 10 and >100 cGy.

Our understanding of the molecular regulation of radiation effects has
expanded enormously. An increased understanding of the mechanism of
radiation resistance has made targeted cancer therapy possible.

Clinical investigations of one such agent, cetuximab, have shown improved
survival resulting from increasing control of advanced cancer of the head and
neck (45). This proof-of-principle that the combination of radiation therapy
and molecular targeting agents can improve outcome without major toxicity
has opened up enormous opportunities for the treatment of cancer patients.
Investigations of new targets have hinted at the possibility that we can
sensitize tumors and protect normal tissues with a single targeted therapy.

One study showed that low-dose gamma irradiation (LDI) can affect the
barrier in the tumor microenvironment preventing efficient T cell infiltration.
LDI programs macrophage differentiation to an iNOS+/M1 phenotype that
then can orchestrate effective T cell immunotherapy. In a NOD/SCID
xenotransplant model of human pancreatic carcinomas, neoadjuvant local LDI
caused normalization of aberrant vasculature, efficient recruitment of tumor-
specific T cells and T-cell mediated tumor rejection with prolonged survival
(49).

In the last decade, several studies have shown that protocols using LDI are
effective in providing local tumor control with negligible normal tissue
toxicity. LDI stimulates antioxidant capacity, repair of DNA damage, apoptosis
and induction of immune responses (50).

Another study combined LDI with sunitinib and anti-tumor vaccination. The
cancer vaccine was based on a Semliki Forest virus vector encoding the
oncoproteins E6 and E7 of human papillomavirus (SFVeE6,7). The trimodal
sunitinib, LDl and SFVeE6,7 immunizations enhanced the intratumoral
immune compartment by a factor of 10,000 with E7-specific CD8+ T cells. As a
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result, the triple treatment strongly enhanced the immunotherapeutic effect,
blocking tumor development altogether and leading to 100% tumor-free
survival of tumor-bearing mice (51).

In @ murine tumor model for multiple myeloma, LDI was combined with PD-
1/PD-L1 checkpoint blockade. The bone marrow from untreated myeloma-
bearing control mice contained elevated levels of T cells expressing PD-1, 2B4,
LAG-3 and TIM-3 proteins. When PD-L1 blockade was combined with blocking
antibodies to LAG-3, TIM-3 or CTLA-4, synergistic or additive increases in
survival were observed. The increased survival rates correlated with
increased frequencies of tumor-reactive CD8 and CD4 T cells (52).

Photodynamic therapy (PDT) is performed with red light and a
photosensitizer such as hypericin (Hyp). An interesting study investigated
phototoxic and immunological effects of a low dose Hyp-PDT in contrast to
the commonly used conditions. It was reported that low dose Hyp-PDT
induced complete tumor regression in BALB/c mice bearing CT26 colon
carcinoma (53).

E. COMBINING LOW DOSE CHEMOTHERAPY WITH STANDARD
THERAPY AND WITH NOVEL THERAPEUTIC STRATEGIES

Standard cytotoxic antiproliferative chemotherapeutic agents are usually
administered every 2-3 weeks. Along with acute toxicity and long-term
effects of cumulative doses, this strategy potentially allows regrowth of the
tumor in the interval period and leads to the emergence of resistant
populations of tumor cells.

The administration of chemotherapy at reduced doses given at regular,
frequent time intervals, termed “metronomic” chemotherapy (MCT),
presents an alternative to standard maximal tolerated dose (MTD)
chemotherapy.

The primary target of MCT were originally endothelial cells supporting the
tumor vasculature, and not the tumor cells themselves. While anti-
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angiogenesis is still an important mechanism of MCT, other mechanisms,
including activation of anti-tumor immunity and a decrease in acquired
therapeutic resistance, have also been identified.

MCT seems to be capable of selectively eliminating immunosuppressive
cells (54). In particular, cyclophosmamide (CPA), paclitaxel, and
temozolomide can reduce Treg activity when delivered as metronomic doses
(i.e., repetitive, low doses). In the case of CPA, metronomic doses serve to
minimize toxicity, inhibit angiogenesis and avoid global immunosuppression
which results from administering a single, high dose (55). Metronomic CPA
only transiently reduced Treg but induced stable tumor-specific T-cell
responses. These correlated with improved clinical outcome in advanced-
stage breast cancer patients (56).

Over 15 years ago, low-dose MCT was shown to induce disease control in
patients with advanced-stage breast cancer with a lower incidence of adverse
events compared with conventional MTD chemotherapy. Good response
rates have been seen in heavily pre-treated patients for whome only limited
treatment options were available. This holds true for elderly patients with
newly diagnosed GBM in which standard CT is often omitted due to fear of
side effects. The past over 10 years have seen a marked rise in clinical trials of
MCT. It is increasingly combined with conventional therapies (CT or RT), as
well as with novel therapeutic strategies, such as targeted small molecules
and immunotherapy. A systematic literature analysis of low-dose MCT
revealed that the treatment appears to be clinically beneficial and safe in a
broad range of tumors (57).

F. COMBINING LOW DOSE WHOLE BODY IRRADIATION WITH
IMMUNE CHECKPOINT PROTEIN BLOCKADE FOR MYELOMA

Multiple myeloma (MM) is characterized by the presence of neoplastic
plasma cells in the bone marrow. It is generally considered to be an incurable
disease. Sublethal whole body irradiation leads to transient lymphodepletion.
In @ murine MM model, a temporal phenotypic analysis of bone marrow
samples revealed an elevated expression in percentages of PD-1, 2B4, LAG-3
and TIM-3 protein expressing T-cells. When PD-L1 blockade was combined
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with blocking antibodies to LAG-3, TIM-3 or CTLA4, synergistic or additive
increases in survival were observed. Survival rates improved from about 30%
to >80%. The increased survival rates correlated with increased frequencies of
tumor-reactive CD8 and CD4 T-cells. There was thus a synergistic effect of
combining lymphodepleting doses of whole body irradiation with checkpoint
protein blockade (58).

G. SUPPORTIVE THERAPIES FROM COMPLEMENTARY MEDICINE

Standard and biological therapies can also be combined with therapies from
complementary medicine. Many of these latter approaches are orientated
towards normal physiological regulatory systems. Table 43 lists some of these
therapies. This paragraph is based on H Heine (59).

It may be worth for lay people to first present some definitions:

i) Metabolic transformation is a term to describe the collective changes in
cellular metabolism that arise from cancer-causing mutations and enable cells
to grow and proliferate independently of normal physiologic control
mechanisms. The Warburg effect, which will be discussed in more detail in
Chapter VII, is one component of the metabolic transformation.

ii) Metabolism represents biochemical activities concerned with the handling
of organic compounds (sugars, amino acids, nucleotides, lipids) through a
variety of enzymatic pathways. Anabolic metabolism is the coordinated
metabolic activity that allows the cells to produce macromolecules, such as
lipids and proteins. They consume energy. Catabolic metabolism is used to
degrade molecules to produce simple constituents and energy. Examples are
B-oxidation of fatty acids and amino acid oxidation. Both processes produce
ATP at the expense of intermediates that could have otherwise been used for
anabolism.

Differences in metabolism between tumors and normal tissue is exploited
for diagnostic and therapeutic benefit. PET is a nuclear medicine imaging
modality that allows metabolism to be studied in vivo with the use of
radioactive tracers. The most commonly used tracer is FDG, a glucose analog
that can be transported into cells and phosphorylated by hexokinase, but
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cannot be metabolized further. FDG-PET allows to distinguish regions of
abnormally high glucose metabolism. It can be used to identify new tumors,
to determine regional lymph node involvement or diagnose distant
metastases. It is even possible to use this method to evaluate response to
therapy.

In the following, we will mention four principles from Table 43.

1. Anti-oxidants, Cox-inhibitors. Oxidative stress is caused by reactive oxygen
species (ROS) and reactive nitrogen species (RNS). Such stress can impair
pivotal functions of cells in the body. Anti-oxidants and Cox-inhibitors try to
counter-act.

2. Basic tissue regulation. This is concerned with the correct transport of
metabolites through capillaries, ECM and lymphatics. Mechanisms of
homeostasis and homeodynamics regulate for instance the maintenance of a
physiological tissue pH. Tumor growth is often associated with tissue acidosis.
Edema are a sign of dysregulated water and metabolite transport.

3. Phytotherapy. Carotinoids and flavonoids can be used to influence
carcinogen metabolism. Hepatic tissues are enriched with metabolic enzymes
specialized in chemical conversion referred to as biotransformation.
Biotransformation enzymes are thought to have evolved as natural defenses
against environmental toxin exposure. Phase | enzyme reactions include
oxidation, reduction, and hydrolysis reactions and, generally, expose
functional groups that enable Phase Il biotransformation enzymes to
proceed. Phase Il reactions catalyze for instance glucuronidation, sulfatation,
acetylation, methylation, and glutathione conjugation. Phase |
biotransformation of carcinogens often results in reactive metabolites
capable of covalent modification of cellular macromolecules. Phase I
reactions ultimately result in metabolites that are less toxic and more readily
excreted.

4. Hyperthermia (HT). This modality is used as a supportive means of other
cancer therapies. An increase in tumor tissue temperature can have various
effects: i) activation of the immune system (38,5 — 39,5°C), ii) tumor cell toxic
effects (>41,5°C), iii) synergistic effects with CT, RT and OV therapy due to
changes in blood vessels. Heat can be produced by radiation with micro- or
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radiowaves. HT can be applied either locally (e.g. skin tumors) or regionally
(deeper in tissues, larger organ areas, e.g. pancreas or colon carcinoma) or,
less frequently, as total body HT ( in combination with CT in cases of systemic
metastatic disease).

5. Chrono-Pharmacology. Circadian rhythm adapts the body to the day-and-
night rhythm generated by the earth’s rotation. This is reflected, among
others, by plasma cAMP and endorphin level. The Nobelprize for Physiology
or Medicine 2017 was awarded to J Hall, M Rosbash and M Young for their
research on the circadian clock.

As described in (60), the circadian timing system is composed of molecular
clocks. These drive 24-h changes in xenobiotic metabolism and detoxification,
cell cycle events, DNA repair, apoptosis, and angiogenesis. The cellular
circardian clocks are coordinated by endogenous physiological rhythms, so
that they tick in synchrony in the host tissues. Circardian timing can modify 2-
to 10-fold the tolerability of anticancer medications in experimental models
and in cancer patients.

All biorhythms have an activity phase and a relaxation phase. There are the
heart and respiration rhythm (their ratio is usually 4:1), the duodenal rhythm
and stomach peristaltic (with a similar ratio of 4:1). The photoentrainment, in
which the endogenous clock is synchronized with visuell impressions, has its
functional center in the hypothalamus (nucleus suprachiasmatis). Melanopsin
and melatonin are mediators of the photoentrainment and the circadian
clock. Chronotherapy aims at the optimal time point for the application of a
pharmacon.

A few examples may elucidate the supportive effects of such treatments.

1. Anti-oxidants, Cox-inhibitors. The trace element selenium (Se) and
selenocysteine-carrying selenoproteins play a pivotal role in the brain. The
anti-toxic and cancer-preventive properties of Se in current multimodal brain
tumor therapies have been summarized (61). Magnesium (Mg) is the fourth
most abundant mineral in the body. It has a co-function in more than 300
enzymatic reactions, many of which are crucial for ATP metabolism (62). Low
levels of Mg have been associated with a number of chronic diseases (62).
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Intravenous vitamin C (IVC) is a contentious adjunctive cancer therapy. A
systematic review (63) revealed that IVC may improve the quality of life and
symptom severity of patients with cancer. Well-designed, controlled studies
of IVC therapy are, however, missing.

Vitamin B-6 (B-6) has a strong antioxidative effect. B-6 supplementation
mediates antioxidant capacity by reducing plasma homocysteine
concentration in patients with hepatocellular carcinoma after tumor
resection (64).

Coenzyme Q-10 (Q-10) is a widely used alternative medication or dietary
supplement as an antioxidant. Although supplementation with Q-10 has been
reported to be beneficial in treating hypertension, congestive heart failure,
statin myopathy, and problems associated with chemotherapy, its benefit has
not been confirmed in randomized clinical studies. Nevertheless, it appears
safe in selected clinical situations (65).

L-carnithin as an antioxidant may have neuroprotective effects (66). Alpha-
lipoic acid possesses beneficial effects both in the prevention and treatment
of diabetes (67). Omega-3 fatty acids have been shown to significantly reduce
the risk for sudden death caused by cardiac arrhythmias (68).

Cimetidine has been shown to play an important role in the treatment of

cancer and the regulation of the immune system (69). It can alleviate
systemic immunosuppression and improve local immune function of
colorectal cancer patients in the perioperative period (69). Excess
prostaglandin and catecholamine release contributes to postoperative
immune-suppression. Treatment combining perioperative COX-2 inhibition
and beta-blockade may improve immune competence and reduce risk of
tumor metastasis (70).

2. Phytotherapy. Mistletoe is amongst the important herbal medicines
traditionally used as complementary remedies. The analysed trials suggest
that there might be a combination of pharmacological and motivational
aspects mediated by mistletoe extract application. These may contribute to
the clinical benefit and positive outcome such as improved health-related
quality of life (HRQoL) and self-regulation in breast cancer patients (71).
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The flavonoid quercetin was reported to inhibit pancreatic cancer growth in
vitro and in vivo (72). Incense use is an integral part of daily life in large parts
of Asia. The results of a study from 2008 indicate that long-term use of
incense is associated with an increased risk of squamous cell carcinoma of the
respiratory tract (73).

Green tea is the most widely consumed beverage besides water and has
attained significant attention owing to health benefits against maladies, such
as obesity, diabetis mellitus, cardiovascular disorders, and cancer insurgence
(74). Cell culture and animal studies elucidated anti-cancer mechanisms of
green tea such as induction of apoptosis, altered expression of cell-cycle
regulatory proteins, activation of killer caspases, and suppression of nuclear
factor kappa-B activation (74).

Sulforaphane is a natural product commonly found in broccoli. Interestingly,
this compound was found to inhibit hypoxia-induced HIF-10 and VEGF
expression and migration of human colon cancer cells (75). Evidence also
suggests that sulforaphane may target the epigenetic alterations observed in
specific cancers by HDAC inhibition (76). Bromelain and N-acetylcystein are
two natural, sulfhydryl-containing compounds with good safety profiles. They
have been applied for more than 50 years. Cell cycle arrest, apoptosis and
autophagy were induced by these compounds on a panel of gastrointestinal
cell lines (77).

3. Chrono-Pharmacology. Gastrointestinal cancer is a disease that affects the
population worldwide with high morbidity and mortality. The ability of
melatonin to inhibit gastrointestinal cancer is substantial. Its mechanisms of
action include inhibition of proliferation, invasion, metastasis, angiogenesis,
and promotion of apoptosis and anti-cancer immunity (78).

H. PAIN CONTROL IN CANCER

Pain is an important symptom in cancer patients. A symposium article
describes recent findings and trends (78).

30-40% of patients present pain at diagnosis, 40-70% during treatment and
70-90% during the palliative care phase.
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Since the 1980s, the guidelines of pain treatment according to the WHO
state that analgetics should be readily accessible.

Paracetamol and non-steroidal anti-inflammatory drugs (NSAID) are the
standard drugs of the first step of the WHO pain ladder. Weak opioids
constitute the second step of the WHO pain ladder. Codein is the standard
weak opioid and can be used in combination with paracetamol. Strong
opioids are classified at the highest step of the analgesic ladder. Morphine is
still the standard drug. More potent ones are hydromorphone, fentanyl,
oxycodone and methadone.

The review includes the following tables: 1. Adjuvant drugs used in paib
control, 2. Specific receptors, stimuli and effects, 3. Endogenous ligands and
receptors in pain modulation, 4. Effects of different opioid receptors, 5.
Receptor and pharmacokinetics characteristics of different opioids.

The use of the pain medication according to the WHO pain ladder controls
aroud 80% of cancer pain. In future there will be an increase of knowledge of
the pathophysiology of pain. The introduction of new drugs and/or the fine-
tuning of older medications will hopefully increase the response rate to 100%.

Chapter VI

Key points:

1. This chapter discusses strategies to combine biological with standard
therapies to achieve synergistic effects and to increase the efficacy of cancer
treatment.

2. Oncolytic viruses may be combined with chemotherapy to increase intra-
tumoral virus replication or they may be combined with checkpoint inhibitors
to increase systemic anti-tumor immunity.

3. Immunotherapy may profit from combination with low dose irradiation.

4. Standard therapy may profit from combination with low dose
(metronomic) chemotherapy.
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5. Standard and biological therapies might be further optimized by supporting
therapies from complementary medicine.
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Table 42 Challenges of Combination Therapies

Cancer pathways to become increasingly malignant:
- defects in the IFN pathway
- apoptotic resistance
- immune suppression
- angiogenesis
OV pathways to support their replication
- defects in the IFN pathway
- apoptotic resistance
- immune suppression
- angiogenesis (virus spread via leaky vasculature)

Conflicting mechanisms: apoptosis versus virus replication, anti-angiogenesis
versus viral trafficking, antiviral immune responses versus antitumor immune
responses.
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How to balance the need of virus replication in tumor tissue and the
associated need to keep down anti-viral immunity with the need to induce
innate and adaptive anti-tumor immune mechanisms ?

For example: Low dose CPA may remove immunosuppressive Tregs to
improve ICD-induced anti-tumor immunity, however, it may also promote
antiviral immune responses leading to early viral clearance (166). High dose
CPA may enhance viral oncolysis through widespread immunosuppression
but it may also completely abrogate anti-tumor immune responses

- The challenge is to obtain a better understanding of the often complex OV-
drug interactions.

Table 43 Examples of combinations of OVs with Drugs

ov Drug Mechanism of immunomodulation PMID
NDV Ipilimumab i) systemic 24598590
HSV “ “ 27298410
Cyclo-P “ 10426310
Gemcitabine “ 17726607
Temozolomide ” 16391370
Valproic acid ii) specifically anti-viral response 28189010
Trichostatin A “ 18388912
5-Azacytidine “ 24056786
LY294002 “ 21505062
Rapamycin iii) both 21128236
hTERT-Ad Bortezomib i) systemic 20675696
VSV Sunitinib ii) specifically anti-viral response 21636578
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Triptolide “ 23985699
Reovirus Sunitinib “ 20364090

'A% “ “ 24474587

Table 44 Combination with therapies from complementary medicine

Type Substance/means Target
1. Anti- oxidants, vitamins, minerals enzymes
Cox-inhibitors cimetidine, silvestrol immune system
2. Basic tissue regulation, anabolites, transport through capilla-
metabolites catabolites ries, ECM , lymphatics,
tissue pH, homeostasis, tissue acidosis,
homeodynamics edema
3. Phytotherapy carotinoids inhibition of phase | enzymes
flavonoids induction of phase Il enzymes
4. Hyperthermia radiation tissue temperature
5. Chrono-Pharmacology light circadian rhythm
photoentrainment melanopsin nucleus suprachiasmatis,
rhythmic regulation melatonin
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CHAPTER VII. PHYSIOLOGICAL REGULATORY SYSTEMS AND

CANCER-ASSOCIATED DYSREGULATION

This Chapter is based on the excellent textbook “Berne & Levy Physology”
(1). The description of cancer-associated dysregulation is based on the
textbooks “The Molecular Basis of Cancer” (2), “The Biology of Cancer” (3)
and on “Lehrbuch der biologischen Medizin” (4).

A. INTRODUCTION

The discipline of physiology deals with the function of the human body as a
complex process at multiple levels. The human body consists of billions of
cells that are organized into tissues, for instance epithelia, muscle or the
nervous system. Then there are the organ systems, for instance the
cardiovascular, respiratory, gastrointestinal, renal, endocrine, reproductive or
nervous system. The cells in the body must survive and this requires energy
supply, maintenance of an appropriate intracellular milieu, and defense
against a hostile external environment.

The cells, tissues and organs must be coordinated and regulated. Since
cancer can be considered as a dysregulated form of cellular disease, the
understanding of basic regulatory systems within the body is important for
understanding the dysregulations by cancer and for the design of new
strategies targeting such dysregulations. It is within this context that this
Chapter is included in this book.

Cancer cells need even more energy than normal cells because of their
higher proliferation. They therefore developed additional mechanisms of fuel
supply such as tumor-induced angiogenesis and anaerobic glycolysis (see
below). At the end of this Chapter we will deal with reversion of cancer-
relevant dysregulations such as cachexia and liver metastasis. It may
therefore be appropriate to mention some introductory facts about enery
storage and consumption:

The liver converts precursors into fuel storage forms (e.g., glucose to

glycogen) when food is ingested, and converts storage forms to cellular fuels
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during fasting or liver regeneration (e.g., glycogen to glucose and amino acids
to glucose). Like the liver, skeletal muscle stores fuel (glycogen and protein)
and converts glycogen and protein to fuels (e.g. glucose) or fuel intermediates
(e.g. amino acids) during fasting or cachexia.

The gastrointestinal tract digests and absorbs fuel precursors. Adipose

tissue stores fuel during food intake (e.g., fatty acids to triglycerides) and
releases the fuels during fasting or cachexia. The cardiovascular system
delivers the fuel and to and from their storage sites to the cells. The
endocrine system maintains the blood levels of the cellular fuels by
controlling and regulating their storage and their release from storage (e.g.,
insulin and glucagons).

Above all, the Nervous sytem monitors oxygen levels and nutrient
content in the blood and, in response, modulates the cardiovascular,
pulmonary, and endocrine systems and induces feeding and drinking
behaviors.

B. MILESTONES FROM PHYSIOLOGY RESEARCH

As with the previous disciplines, this Chapter starts with an overview of
milestones since the last century. Thirteen examples of milestones achieved
by Nobel Laureats are listed in Table 44 concerning the period from 1900 to
1945. Nine further examples of the period from 1947 to 2012 are listed in
Table 45. In the context of the topic of this Chapter, the contributions of A
Krogh (1920), O Warburg (1931) and those of AZ Fire and C Mello (2006) will
be described in more detail.

C. PHYSIOLOGICAL REGULATORY MECHANISMS

The body is capable of exerting defenses against malignant growth at
various levels:

1. Controls imposed on cells by the apoptotic machinery; this triggers the
death of cells that are misbehaving or suffering certain types of damage or
physiological stress,
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2. Controls imposed by the pRb circuit and by the DNA repair apparatus,

3. Loss of contact of epithelial cells with the basal membrane ECM; this may
activate a form of apoptosis called anoikis and limits the cell’s capacity to
move away from its normal tissue location,

4. Defense mechanisms by the innate and adaptive arm of the immune
system.

Cancer can be considered as a disease of dysregulated physiology. Table 46
lists examples of levels of dysregulation by cancer. Colum A shows intra-
cellular and colum B extra-cellular levels.

From these only the following will be discussed:
i) the level of DNA (genetics and epigenetics),
ii) the level of RNA (in particular regulation via miRNA),
iii) the level of intra-cellular organelles (in particular mitochondria),
iv) the level of the plasma membrane and glycocalyx
v) the level of ECM
vi) the level of microenvironment in wound healing or cancer
vii) the level of dysregulation of physiological systems for organ metastasis.
Other levels were mentioned already in Chapter VI (Table 43).

In order to understand dysregulatory mechanisms of cancer, it seems
appropriate to first summarize normal physiological regulation at these
various levels.

i) THE LEVEL OF DNA
a) genetics

Regulatory mechanisms are particularly important to protect normal tissue
stem cells and to keep their DNA free from mutations. Such mechanisms
include:

1. relatively infrequent replication of stem cell DNA,
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2. placement of stem cells in anatomically protected sites,
3. rapid initiation of apoptosis in case of genetic damage,
4. upregulation of drug pumps such as

Mdr-1 (multi-drug resistance protein 1), and
5. assymetric DNA “template strand” allocation.

The major proteins involved with DNA repair include sensory (DNA binding)
proteins, enzymes that remove damaged bases, and enzymes that restore the
normal DNA sequence. A large number of regulatory enzymes control each
DNA repair pathway. Regulatory enzymes, such as helicases, serve to load
DNA repair complexes at the site of DNA damage. Other regulatory enzymes,
such as topoisomerases, serve to unwind damaged DNA to facilitate DNA
repair complex assembly, loading into chromatin, and disassembly. There
exist six DNA repair pathways: Base excision repair (BER), Mismatch repair
(MMR), Nucleotide excision repair (NER), Homologous recombination (HR),
Non-homologous end joining (NHEJ) and Translesional synthesis (TLS).

b) epigenetics

The initiation of DNA methylation, its maintenance, and its role in
transcriptional repression (silencing) are all dependent on its interaction with
chromatin organization. There has been an explosion of knowledge over the
past 15 years in understanding how chromatin functions for packaging of the
genome and for direct modulation of gene expression.

A series of proteins, called methyol cytosine binding proteins (MBPs), and
the protein complexes in which they reside, can bind to methylated CpG sites
to help relay a silencing signal (5). These complexes contain histone
deacetylases (HDACs) which catalyze the deacetylation of key amino acid
residues. These are highly characteristic of transcriptionally silent regions of
DNA. The precise manner in which all of these chromatin components
interact to initiate and/or maintain abnormal gene promoter DNA
methylation and the attendant silencing of involved genes is not yet known.

When DNA, methylated at CpG residues, is replicated, the newly formed
daughter strands initially lack methyl groups on the CpG sites complementary
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to those methylated sequences in the parental DNA strands. However,
shortly after replication, maintenance methylases add methyl groups to the
newly synthesized CpG sites, ensuring the transmission of the methylated
state from one cell generation to the next. Such methylation is often
associated with the repression of gene transcription. Hence, genes may be
inactivated in a heritable fashion without any change in their nucleotide
sequence.

ii) THE LEVEL OF miRNA

AZ Fire and C Mello, both from USA, received in 2006 the Nobel Prize for
Physiology or Medicine for their discovery of RNA interference (see Table 45).
miRNAs are short (21-23 nucleotides in length) noncoding RNAs that regulate
post-transcriptionally gene expression by messenger RNA (mMmRNA)
degradation or translation repression.

It has been estimated that miRNAs regulate about 50% of all protein-coding
genes. miRNAs play fundamental roles in many biological processes, e.g.
carcinogenesis, angiogenesis, programmed cell death, cell proliferation,
invasion, migration, and differentiation. The expression of miRNAs is altered
in cancers. It could be up- or downregulated. Upregulated miRNAs exert an
oncogenic effect, while downregulated miRNAs have tumor suppressor
effects. Every tumor has specific miRNA alterations so that these can be used
as a tumor-specific signature (6).

iii) THE LEVEL OF MITOCHONDRIA

Regulation of tissue oxygenation (7) includes the respiratory system, the
blood circulatory system and the cardiorespiratory system. The respiratory
system takes oxygen from the atmosphere and transports it by diffusion from
the air in the alveoli to the blood flowing through the pulmonary capillaries.
The cardiovascular system then mooves the oxygenated blood from the heart
to the microcirculation of the various organs by convection, where oxygen is
released from hemoglobin in the red blood cells and moves to the
parenchymal cells of each tissue by diffusion.

Oxygen that has diffused into cells is then utilized in the mitochondria to
produce ATP, the energy currency of all cells. The mitochondria are able to
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produce ATP until the oxygen tension or Pg3 in their vicinity falls to a critical

level of about 1 mm Hg. Thus, in order to meet the energetic needs of cells, it
is important to maintain a continuous supply of oxygen to the mitochondria

at or above the critical Po2 .

Most intracellular ATP is generated by mitochondrial respiration. The inner
mitochondrial membrane contains the oxidative phosphorylation system that
permits ATP synthesis. Phospholipids environment and especially cardiolipin
are crucial for the mitochondrial energy metabolism. Cells need a constant
supply of energy. This energy is derived from the hydrolysis of ATP. The
cellular ATP supply can be depleted very fast, within less than 1 minute. It
therefore must be replenished continuously.

ATP can be generated from the oxidation (burning) of cellular fuels from the
blood circulatory system, such as glucose, fatty acids, and ketoacids. The
blood levels of these fuels are maintained through the ingestion of
precursors, such as carbohydrates, proteins, and fats. The storage form of
these fuels are triglycerides (stored in adipose tissue), glycogen (stored in the
liver and skeletal muscle), and protein. The maintenance of adequate levels
of cellular fuels in the blood is a complex process involving various tissues,
organs, and organ systems.

Mitochondria participate in a variety of anabolic pathways, including
cholesterol, cardiolipin, heme and nucleotide biosynthesis. These organelles
are required for cellular survival but they also play a role in cell death.
Mitochondria integrate numerous pro-survival and pro-death signals.
Thereby they exert a decisive control over several biochemical cascades. One
pathway, called the intrinsic pathway of apoptosis, leads to cell death.

iv) THE LEVEL OF PLASMA MEMBRANE AND GLYCOCALYX
a) the PM

The plasma membrane (PM) and mechanisms of homeostasis are important
for the maintenance of a constant volume and composition of the body fluid
compartments and their temperature.
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The human body is an “open system”. The amounts of substances added to
or lost from the body can vary widely. Homeostasis occurs through the
process of steady-state balance.

Water balance determines the osmolality of the body fluids. Cells within the
hypothalamus of the brain monitor body fluid osmolality for deviations from
set points (normal range: 280-295 mOsm/kg H20). When deviations are
sensed, two effector signals are generated. One is neural and relates to the
individual's sensation of thirst. The other is hormonal (antidiuretic hormone:
arginine vasopressin), which regulates the amount of water excreted by the
kidneys.

Water makes up approximately 60% of the body's weight. An individual
weighing 70 kg would have 42 liter (L) of total body water. 28 L make up the
intracellular fluid (ICF) and 14 L the extracellular fluid (ECF). These two fluid
compartments are separated by the cells PM. The ECF can be further
separated into the 10.5 L of Interstitial fluid and the 3.5 L of Plasma. Here it is
the capillary wall that separates these two fluid compartments of the ECF.

The PM separates the intracellular contents from the extracellular
environment. Because of the structure and composition of this membrane
and because of the presence of specific membrane proteins, the PM is
involved in a number of important cellular functions:

- Selective transport of molecules into and out of the cell, a function carried
out by membrane transport proteins.

- Recognition of extracellular substances and signaling molecules through cell
surface differentiation antigens and receptors.

- Cell communication through neurotransmitter and hormone receptors and
through signal transduction pathways.

- Tissue organization, such as temporary or permanent cell junctions, and
interaction with the ECM, with the use of a variety of cell adhesion molecules.
- Membrane-dependent enzymatic activity.

- Determination of cell shape by linkage of the PM to the cytoskeleton.

Normal cellular function requires that the ionic composition of the ICF is
tightly controlled. Also, the intracellular composition of other electrolytes is
held within a narrow range. This is necessary for the establishment of
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membrane potential, a cell property especially important for the normal
function of excitable cells (e.g., neurons and muscle cells) and for intracellular
signaling (e.g. intracellular [Ca++]). Finally, the volume of cells must be
maintained because shrinking or swelling of cells can lead to cell stress, cell
damage and death.

b) the Glycocalyx

Syndecan is the dominant cell surface Heparan-sulfate-proteoglycan (HSPG).
The ectodomains of syndecan and of all other glycocalyx proteoglycans (PGs)
contain receptors for ECM components. Tumor cells show dysregulations of
cell-surface PG expression. They can therefore more easily change their cell
shape. This is important for intra- and extra-vasation. Tumor cells also
respond less to cell-contact mediated cytostasis which allows them to grow
on top of each other.

Glypican, another cell surface HSPG, is necessary for the development of a
normal nervous system. It is particularly important for the visual system (8).
HSPGs control the filter properties of basal membranes (e.g. glomerula of the
kidney), the binding of acetylcholinesterase in neuro-muscular synapses, they
bind protease inhibitors (e.g. antithrombin) and facilitate the attachment of
cells to the ECM. bFGF binds to heparan-sulfate side chains of HSPGs and can
be removed by plasmin and heparanase. Thereby bFGF retains its biological
properties such as acceleration of chemotaxis of cells, wound healing and
induction of cell proliferation (9). The side chains of HSPGs can also bind Na+,
K+, Ca++ and Mg++ ions in a reversible way and exchange them. This depends
on the tissue pH.

c) Epithelial structure and function

Epithelial cells are arranged in sheets and provide the interface between the
external world and the body’s internal environment. Depending on their
location, epithelial cells serve many important functions:

- Establishing a barrier to microorganisms (lungs, gastrointestinal tract, and
skin);

- Prevention of loss of water from the body (skin);

- Maintenance of a constant internal environment (lungs, gastrointestinal
tract, kidneys); this function is the result of the ability of epithelial cells to
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carry out regulated vectorial transport from one side of the epithelial cell
sheet (e.g., the apical side) to the opposite side (e.g., the basolateral side).
Adhering junctions, desmosomes, and hemidesmosomes provide mechanical
adhesion by linking together the cytoskeleton of adjacent cells or to the
underlying connective tissue.

- Tight junctions separate the apical from the basolateral membrane. Gap
junctions provide connections between cells and allow exchange of ions and
small molecules.

v) THE LEVEL OF THE ECM

Three excellent reviews are recommended with regard to the ECM. 1.
“Molecular assembly and mechanical properties of the extracellular matrix: A
fibrous protein perspective” (10). 2. “Regulation of cellular functions by
extracellular matrix” (11). 3. “Extracellular matrix regulation of stem cell
behavior” (12).

The ECM regulates tissue development and homeostasis. Its dysregulation
contributes to neoplastic progression and modulates the hallmarks of cancer
(13). The ECM serves not only as the scaffold upon which tissues are
organized but provides critical biochemical and biomechanical cues that
direct cell growth, survival, migration and differentiation. It also modulates
vascular development and immune function.

ECM influences each of the hallmarks of cancer defined by Hanahan and
Weinberg (14) : sustained proliferation, evasion of growth suppression, death
resistance, replicative immortality, induced angiogenesis, initiation of
invasion and metastasis. Recently, two further hallmarks have been added:
reprogramming of energy metabolism and avoidance of immune destruction
(14).

ECM structure: A matrisom has been defined to consist of 3 macromolecules
of the ECM and of transitory attached molecules. One type of macromolecule
represents a PG with its glucosaminoglycan (GAG) side chains, another type
the structural glycoproteins and a third type the net forming glycoproteins.
The transitory attached small molecules include water, cytokines, hormones,
peptides, neurotransmitters etc. Such structural unit of the ECM can be
repeated n-fold (15).
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Proteoglycans are the main component of the ECM. They are everywhere in
the interstitium, in slime, intra-cellular and extra-cellular in the glycocalyx.
They are produced by cells of mesenchymal origin and in the CNS by

astrocytes. Mesenchymal cells are associated with blood vessels and
form all the kinds of interstitial tissue. Derivatives of the omnipotent
mesenchymal stem cell can be fibro-, osteo-, chondro- and myoblasts. Other
cell derivatives form the reticulo-histiocytary system, the hematopoetic cells
of the bone marrow and the reticular and dendritic cells of lymphatic organs.
All these cells exchange information via gap junctions. This allows the
transport of small ions and molecules. Lymphocytes can form very distinct
contacts with mesenchymal DCs in the form of immunological synapses.
There thus exists a network of transfer of information within the interstitial
tissues. Like a homeostat, the system is supervised via connections with
hormonal and the CNS systems.

The basic scaffold of the molecular sieve of the ECM is made of the
electronegatively charged PGs and GAGs. PGs have a 300 nm protein
backbone with over 100 sulfated GAG-side chains. The GAG polysaccharides
make up 90-95% of the total mass of a proteoglycan molecule (16).

Fluid recirculation is regulated via the ECM as molecular sieve. The concept
of Virchow of defining the cell as the smallest functional unit of the body has
been extended by concepts from humoral pathology. In their view, the
smallest functional unit is the cell with its surrounding milieu. For single cell
organisms which originated in the sea, the milieu was the sea water. It is
perhaps not fortuitous that the interstitial tissue fluid of multicellular
organisms has a composition of salts and osmolarity similar to that of the
oceans.

The interstitial tissue fluid does not circulate in a free form between the cells
and the blood vessels. It circulates through a network of high molecular

weight PGs and GAGs of the ECM which function like a flexible Gel. Their
composition must ensure that about 15-18 liter of such fluid (in case of 75 kg
body weight) can circulate constantly. This movement has been called the
inner circle (17). Only when the inner circle functions normally, can sufficient
amounts of metabolites be transported via the PM to the cell and catabolites

be removed. The movement of interstitial body fluid is a result of the
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hydrophilic power of colloids like albumin in the blood plasma
(colloidosmotic pressure), of the hydrostatic pressure of blood capillaries and
of the interstitial fluid itself. The capillaries release a protein-free ultrafiltrate
(blood water) into the interstitial fluid. The volume of this should correspond
to 11-13% of the blood volume (about 4,5 | in case of 75 kg body weight). The
interstitial fluid is resorbed back into venous capillaries. Only a small
proportion is drained through the lymphatic system.

Each damage of blood capillaries and their permeability endagers the
metabolism of cells in their neighbourhood. Cells need a constant supply of
energy which requires a constant supply of fuel, as mentioned at the
beginning. In case of loss of body fluid, the gel of the ECM can absorb water
molecules more strongly than plasma albumin does. This ensures a longer
osmotic balance. In case of increased amounts of fluid, the ECM can release
the excess into the lymphatic system.

Only when the ECM can no more absorb excessive fluid, this will be released

into tissue Edema. If damaged capillaries release proteins into the ECM, this
can lead to a complete block of the interstitial fluid circuit with life
threatening edema formation. Also in cases of adiposita and asthma, the
internal fluid circuit is reduced.

The interstitial fluid circuit is connected through the capillaries with the
endocrinium and via the terminal nerve buds with the central nervous
system.

A Krogh received his Nobel Prize in 1920 for his work on capillary-motoric
regulatory mechanisms. He was interested in the question, how muscles
regulate their requirements of oxygen and energy. His studies revealed that
the net of blood capillaries of muscles was filled with blood only when the
muscle was active. The results from studies of insects and birds led to an
explanation of mechanisms of activation and regulation of capillary blood
flow.

vi) THE LEVEL OF THE MICROENVIRONMENT IN WOUND HEALING

Cells require effective interactions with the vasculature not only because of
oxygen supply but also to acquire nutrients and to shed metabolic waste
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products and carbon dioxide. Capillary networks are arranged in tissues so
densely that virtually all cells are no more than several cell diameters away
from the nearest capillary.

The process of developing this vasculature through angiogenesis can be
observed during embryonic development, implantation of the placenta, and
during wound healing. Angiogenesis is normally suppressed by
physiological inhibitors: In wound healing, the burst of angiogenesis that is
required to repair the wound site must be shut down once the newly formed
capillaries have reached a density that suffices to support normal tissue
function. This shutdown is achieved, among others, by suppressing formation

of the HIF-1 transcription factor.

Another factor is thrombospondin-1 (Tsp-1) protein. TSP-1 associates with
a receptor (CD36) that is displayed on endothelial cells and halts their
proliferation. TSP-1 can also cause endothelial cells to release FasL. This may
then act in an autocrine fashion to trigger the death of cells displaying the Fas
receptor.

Transcription of the TSP1 gene is strongly induced by P53, apparently as
part of the p53-mediated emergency response. This response leads to a
generalized shutdown of cell proliferation and tissue growth. Conversely, the
loss of p53 function, which is seen in almost all human tumors, leads to a
substantial decrease in Tsp-1 levels. This permits angiogenesis to be induced
by cells that normally would have been prevented from doing so by the high
Tsp-1 concentrations in the surrounding ECM.

Major physiological regulators that work to promote or inhibit angiogenesis
within tissues balance the angiogenic switch. Activators include: VEGF-A, -B, -
C, FGF1 (aFGF), FGF2 (bFGF) other FGFs and others. Inhibitors are
thrombospondin-1, -2, interferon o,B, angiostatin, endostatin, collagen IV
fragments and others.

D. DYSREGULATORY MECHANISMS OF CANCER

i) GENETIC AND EPIGENETIC DYSREGULATION
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Somatic mutations which activate oncogenes or inactivate tumor suppressor
genes (TSGs) are relatively rare events in the life of a cell. They occur perhaps

at a rate of 10° per cell generation. This rare mutation frequency and the
regirement of multiple mutations to progress to a malignant tumor, provide a
partial explanation for the fact that humans develop relatively few cancers.

Xeroderma pigmentosum (XP) is an inborn cancer susceptibility syndrome
attributable to greatly increased mutational frequency. People suffering from
XP show abnormally high sensitivity to UV radiation. This evokes squamous
cell skin carcinomas and melanomas at exposed sites at a high rate. In skin
cells of most humans, the pyrimidine dimers created by UV radiation are
quickly excised from the damaged DNA and the initial, wild-type nucleotide
sequence is restored. This is achieved by a cohort of DNA repair proteins that
are specialized to effect this particular alteration of DNA structure. In patients
with XP, one or another essential component of this specialized DNA repair
apparatus is absent or defective (18). Altered DNA sequences are transmitted
to the progeny of the initially irradiated cell, resulting in large numbers of
mutations in their genomes.

XP represents only one of the familial cancer syndromes attributable to

defective DNA repair. Another one is the Ataxia telangiectasia syndrome (19).
In hereditary nonpolyposis colon cancer (HNPCC), the apparatus that
recognizes recently made mistakes in DNA replication (mismatch repair
apparatus) is defective (20).

Many familial breast cancers have recently been associated with inheritance
of mutant versions of the BRCA1 and BRCA2 genes (21). Recent experiments
suggest that both of these genes specify proteins that participate in the repair
of double-strand DNA breaks.

UV radiation from the sun causes not only damage to DNA. It also causes
production of reactive oxygen species that may interact with DNA to
indirectly cause oxidative DNA damage. A benefit of sunlight is vitamin D,
which is formed following exposure of 7-dehydrocholesterol in skin cells to
UV. Vitamin D compounds have recently been shown to prevent UV-induced
cell death and DNA damage in human skin cells (5).

236



It is likely that the development of most human tumors depends on losses
of function of two major classes of cellular genes: TSGs and DNA repair genes.
In addition, there is a mechanism of heritability that does not depend on
genetic alterations (i.e. alterations of nucleotide sequence in a cell’s

genome). This epigenetic mechanism depends on methylation of the
cytidine residues present in CpG dinucleotide sequences that are found in
proximity to the promoters of various genes. Such methylation often results
in major shifts in the configuration of nearby chromatin, and in the shutdown

of expression of nearby genes — a process called transcriptional
repression.

The mechanisms that control DNA methylation result in the inactivation of
genes at higher rates per cell generation than those involving somatic
mutations. The obvious conclusion is that the function of TSGs and DNA
repair genes is likely lost more frequently through DNA methylation than
through mutation (6).

Hence, cancer pathogenesis is a disorder of genes and gene function. Such
disorder does not always depend on genetic alterations. It may rather be
attributed to a dysregulatory mechanism. The epigenetic mechanism of

promoter methylation may contribute as frequently, if not more
frequently, to tumor formation than do genetic mechanisms.

The organization of the genome, as mediated by chromatin and DNA
methylation, appears to be abnormal in cancer cells of all types (23,24).
Individual tumors may actually contain hundreds of genes affected by
promoter DNA hypermethylation (25). Genes affected involve TSGs as well as
genes involved in cell cycle control (p16, p15), apoptosis (DAP-kinase,
ASC/TMS1, HIC1), increased stem/developmental pathway activity (SFRPs),
DNA damage repair (MLH1, 06-MGM, GST Pi), cell adhesion (E-cadherin), cell
migration (TIMPs), differentiation (GATA-4, GATA-5, TGF-B receptor) or
chromosomal stability (CHFR) (23-26).

Cancer has been described as a dysregulated epigenome allowing
cellular growth advantage at the expense of the host (27).
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ii) DYSREGULATION VIA miRNAs

The discovery of circulating miRNAs in body fluids has led to their possible
use as biomarkers and treatment-response predictors. Evidence was provided
that tumor cells communicate via the secretion and delivery of miRNAs
packed into tumor-released microvesicles. This has prompted to investigate
contributions of miRNA as signaling molecules to the establishment and
maintenance of the tumor microenvironment and the metastatic niche (28).
Types of body fluids that carry miRNAs include whole blood, serum, plasma,
urine, saliva, pancreatic juice and cyst fluid.

The topic of regulation of cancer metastasis by cell-free miRNAs has been
delt with in an excellent recent review (29). It includes regulatory aspects of
cancer metastasis, biogenesis and function of miRNAs, their importance in
cancer and metastasis, the role of exosomes in cancer and metastasis,
secretion and uptake of cell-free miRNAs, cell-free miRNAs in metastasis, and
miRNA targeting and therapy. Another review discusses a role of miRNAs as
regulators of cancer metastasis and EMT (30).

iii) DYSREGULATION OF ENERGY SUPPLY (MITOCHONDRIA)

O Warburg had noticed that cancers “ferment” glucose via pyruvate to
lactate thus causing acidification of tissue pH. An unusual concentration of
lactate, a product of anaerobic glycolysis, was found even when there was
enough oxygen around for aerobic glycolysis. He hypothesized that
mitochondria of cancer cells have defects in function. This hypothesis from
1930 seems to have been confirmed in 2008 by American Scientists. They

reported cardiolipid and electron chain abnormalities in mouse brain

tumor mitochondria. Their findings are interpreted as lipidomic evidence
supporting the Warburg theory of cancer (31).

Cardiolipin content was also found to be involved in liver mitochondrial

energy wasting associated with cancer-induced cachexia (32). Cancer-

induced cachexia describes the progressive skeletal muscle wasting
associated with many cancers, leading to shortened survival time in cancer
patients.
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Respiratory Complex Il of the mitochondrial membrane serves as a link
between the tricarboxylic acid cycle and the electron transport chain.
Complex Il dysfunction has been implicated in cancer by a mechanism that
likely involves the production of reactive oxygen species (ROS). The presence
of cardiolipin was found to be critical for the assembly and enzymatic activity
of Complex Il, as well as for the prevention of ROS production.

iv) DYSREGULATION AT THE PLASMA MEMBRANE

Neurosurgical procedures, for instance in patients with GBM, and
cerebrovascular accidents (strokes) often result in the accumulation of
interstitial fluid in the brain (i.e. edema) and swelling of the neurons. Because
the brain is enclosed within the skull, edema can raise intracranial pressure
and thereby disrupt neuronal function. This dysregulation at the PM of

neurons can lead to coma and death. The blood-brain barrier, which

separates the cerebrospinal fluid and brain interstitial fluid from blood, can
be permeated freely by water but not by most other substances.

Excess fluid in the brain can be removed by imposing an osmotic gradient

across the blood-brain barrier. Manitol can be used for this purpose.
Manitol is a sugar that does not readily cross the blood-brain barrier and
membranes of cells (neurons and other cells). Therefore, mannitol is an
effective osmole, and intravenous infusion results in the movement of
interstitial fluid out of the brain by osmosis.

v) DYSREGULATION AT THE LEVEL OF THE ECM

Epithelial cells are particularly dependent on signals from the underlying
ECM for maintaining their state of differentiation, function and survival. Loss
of matrix attachment leads to metabolic stress. This is characterized by
reduced nutrient uptake, decreased ATP production, and increased levels of
ROS (33). Such loss of contact with the basement membrane ECM can result

in anoikis, a special form of apoptosis. Thus, ECM attachment is a key

regulator of cellular metabolism. Alterations in metabolism owing to changes
or loss of ECM engagement during tumorigenesis may serve important tumor-
suppressive functions (33).
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Cancers derived from epithelial cells are all carcinomas. These represent the
vast majority of human cancers. It is therefore of importance to try to
understand their pathology and biology.

B Vogelstein studied in detail the multistep process leading to colorectal
carcinoma formation. He could distinguish the following steps: human colonic
epithelial cells from normal epithelium change via hyperplastic epithelium,
early, intermediate and late stages of adenomas to carcinomas and to
malignant carcinomas with invasive and metastatic potential (34). His
multistep human tumor progression model associated those histological
changes to molecular alterations, such as loss of the APOC gene, DNA
hypomethylation, activation of the K-ras oncogene, loss of 18q TSG, loss of
p53, etc. (34).

An alternative to this multistep mechanism involves the action of genes that
are normally involved in programming certain key steps of embryogenesis. In
such steps of embryogenesis, epithelial cells undergo a profound change in
their differentiation program and acquire many of the phenotypes of
mesenchymal cells, including motility and invasiveness. This
transdifferentiation program is termed the “epithelial-mesenchymal
transition” (EMT) (35).

Half a dozen transcription factors (TFs) acting during early embryogenesis
are capable of programming EMTs. These TFs are for instance Snail, Slug,
Twist, Goosecoid, and SIP-1. Each of these is able to act pleiotropically to
cause the repression of epithelial genes and the induction of mesenchymal
genes. Increasing experimental evidence indicates that carcinoma cells
exploit these TFs to execute many of the steps of the invasion-metastasis
cascade (36).

Such TFs seem to be induced by signals that the carcinoma cells experience
in the tumor microenvironment and that originate in the tumor-associated
stroma. For instance, transforming growth factor (TGFB) which may be
released from the ECM, can impinge on certain cancer cells the expression of
several of the mentioned TFs that are capable of programming an EMT (37).
JARID2 , an interacting component of the PRC2 complex, catalyzes
methylation of lysine 27 of histone H3 (H3K27). The expression of JARID2 was
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increased during TGFB-induced EMT of lung and colon cancer cell lines and
knockdown of JARID2 inhibited TGFRB-induced morphological conversion of
the cells associated with EMT (37).

These recent findings greatly simplify our concepts concerning the late
stages of malignant progression. The genotypes of certain primary cancer
cells allow them, in response to stromal signals, to activate long-dormant cell

biological programs : EMTS. Once activated, this program seems to enable a
carcinoma cell to complete most of the steps of the invasion-metastasis
cascade, except one: organ colonization. This last step of the metastatic
cascade appears to involve an adaptation to the novel tissue
microenvironment.

Interestingly, carcinoma cells forming a metastasis often recapitulate the
histopathological appearance of the primary tumor, including its distinctive
epithelial cell sheets and ducts. It seems that signals from the new tissue
microenvironment allow the mesenchymal carcinoma cells to revert via a

mesenchymal-epithelial transition (IMET) to the epithelial phenotype of their

progenitors in the primary tumor.

Eribulin mesilate (eribulin), a non-taxane microtubule dynamics inhibitor,
was recently shown to suppress experimental metastasis of breast cancer
cells by reversing phenotype from EMT to MET states (38). Erubilin treatment
of triple negative cancer cells with a mesenchymal phenotype led to
decreased expression of several mesenchymal marker genes and to increased
expression of epithelial markers. The cells, treated with eribulin for 7 days,
showed decreased capacity for in vitro migration and invasion. In a xenograft
model in vivo, the pretreated cells showed decreased numbers of lung
metastases (38). It was concluded that these findings provide a plausible
scientific basis for clinical observations of prolonged OS in breast cancer
patients treated with eribulin.

While this concept involving EMT at the primary site and MET at a
secondary site, can explain the malignant behavior of many carcinomas, it is
less clear how tumors of other tissue origins (those of neuroectodermal,
mesenchymal or hematopoietic tissues) acquire their aggressive growth and
metastatic properties.
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vi) DYSREGULATION OF THE TUMOR MICROENVIRONMENT

The tumor microenvironment (TME) contains, apart from ECM, resident
stromal cells. These can be fibroblasts, adipocytes, macrophages, mast cells
and vascular components. The TME also contains inflammatory cells of the
innate and acquired immune systems such as NK cells, macrophages, DCs and
tumor-infiltrating lymphocytes (TILs).

a) DCs

The TME imposes often negative effects on DC functions. These can result in
inefficient antigen presentation or polarization into immunosuppressive DCs.
There is thus increasing interest to use OVs to overcome such
immunosuppressive influences in the TME.

A recent review examined how OV-DC interactions can affect DC
recruitment, OV delivery, and anti-tumor immunity activation (39). The
review includes major chapters about i) Development and function of DC
subsets, ii) DCs in viral infections, iii) DCs in the TME and iv) Interaction
between DCs and OVs.

b) Tumor-associated macrophages (TAMS, polarization towards M2,
secreting ROS and RNS and factors like CSF-1, M-CSF and MMP-9)

Tumor-associated macrophages (TAMs) are recruited to the tumors trough
cytokines and chemokines secreted by the cancer cells (40). Unlike
macrophages in a normal, healthy tissue or wound-healing environment (41),
TAMs are modified in the tumor microenvironment and loose the ability to
phagocytose cancer cells or present TAAs to T cells (42).

Macrophages promote both early and late stages of tumor progression.
They are found infiltrating the tumor at sites undergoing basement
membrane breakdown. This is necessary for carcinoma cell invasion into the
surrounding stroma (43). They release cytokines and chemokines that
promote invasiveness of the cancer cells. This process is dependent on TNF-o
and on matrix metalloproteinases, such as MMP-9 (44).

MMP-9 can degrade collagens of the ECM, in particular collagen types IV, V,
XXI and XIV. Other targets of MMP-9 include laminin, chemokines, fibrinogen,
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and latent TGFB. Macrophages are also found in hypoxic areas of the tumor
(44). This may lead to up-regulation of VEGF (45), one of the proposed
mechanisms by which TAMs may promote angiogenesis (46).

Macrophages also facilitate the seeding of cancer cells at the secondary site
(47). As one of the key players in inflammatory responses, macrophages are
at sites of chronic inflammation where they recruit other cell types (e.g.
granulocytes, macrophages and DCs via G-CSF and GM-CSF). They also create
a mutagenic environment through the secretion of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) (48).

c) Cancer-associated fibroblasts (CAFS, secreting pro-angiogenic factors like
FSP1, MMP-13 and TGF-B81)

Fibroblasts, during wound healing change their phenotype to become
“reactive”. Carcinoma-associated fibroblasts (CAFs) differ from normal
fibroblasts. They have an abnormally high expression of smooth muscle actin
and increased expression of proteolytic enzymes and ECM proteins, such as
tenascin-C. CAF-like cells may be derived from carcinoma cells that have
undergone EMT. CAFs may also be expanded precursor mesenchymal cells,
epigenetically changed fibroblasts or mutated fibroblasts.

CAFs stimulate epithelial cancer progression through secreted factors. One is
fibroblast secreted protein 1 (FSP1, also called S100A4, metastasin or mts1)

(49,50). This is a crucial stromal factor regulating metastasis (51,52). SDF-
10 (CXCL12) is another important tumor promoting factor secreted by
CAFs (53).

TGFR is a key player in the communication between CAFs and carcinoma
cells. When acting on fibroblasts, TGFR normally protects epithelium from

developing into carcinomas. TGFB secreted by CAFs, however, acts on
epithelium to promote carcinogenesis (54, 55).

In carcinoma progression, CAFs are largely responsible for the

desmoplastic response. This stromal response involves changes in the
ECM with increased amounts of collagens, fibronectins, proteoglycans, and
glycosaminoglycans (56).
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There may be cross-talk between the collagen-rich stroma and the
infiltrating leukocytes in tumors: Macrophages and DCs become activated
and secrete chemokines in response to binding to type I collagen (56). Vice
versa, leukocytes produce the ECM protein SPARC, which determines stromal
collagen deposition in carcinomas.

d) Vascular endothelial cells and tumor neo-angiogeneis

Like normal tissues, tumors require access to the blood circulation in order
to grow and survive. Pathologists noted in the mid 1950°s that cancer cells
grew preferentially around blood vessels. Tumor cells that were located more
than 0.2 mm away from blood vessels were found to be nongrowing or dying

because of hypoxia. The threshold of approximately 0.2 mm represents the
distance that oxygen can effectively diffuse through living tissues.

There are two ways by which tumors assemble vasculature. Myofibroblasts
in the tumor stroma can release chemotactic signals, such as SDF-1/CXCL12.
These chemotactic signals help to recruit circulating endothelial precursor
cells into the stroma. This is aided by the release of VEGF, which helps these
cells to mature into functional endothelial cells.

VEGF functions as a ligand to VEGF receptor-1 (FLT-1) and VEGF receptor 2
(FIk-1/KDR). Similarly, basic FGF (bFGF), another important angiogenic factor,
binds to its own cognate receptor on endothelial cells. Once stimulated by
such angiogenic factors, endothelial cells proliferate and construct within
their cytoplasms bridges with neighbouring endothelial cells to form the
lumen of a capillary. Such capillaries penetrate through existing tissue layers,
and move towards the highest localized concentration of angiogenic factors.
Similar mechanisms appear to operate during the formation of lymphatic
vessels (lymph-angiogenesis).

In normal tissues, there is a systematic covering of capillaries by

pericytes. In contrast, there is a chaotic dispersion of pericytes near tumor-
associated capillaries. The walls of capillaries in tumors are about ten times
more permeable than those of normal capillaries. The leakiness of tumor-
associated capillaries leads to the accumulation of substantial amounts of
fluid in the parenchymal spaces within a tumor. The ongoing expansion of
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cancer cell populations exerts pressure on those few lymphatic vessels that
do succeed in forming, causing their collapse.

The resulting defective lymphatic drainage within the cores of solid
tumors further exacerbates the elevated accumulation of fluid. Capillary
leakage generate high fluid pressure in the nonvascular parts of tumors. This
pressure, in turn, greatly complicates the effectiveness of anti-cancer
therapeutic drugs.

e) Dysregulation of TILS (recruitment of Tregs, checkpoint inhibition of CTLs)

CD4+CD25+Foxp3 expressing T-cells were found to be overrepresented in
melanoma lymph node metastases (57). This may represent a mechanism by
which tumors escape the immune system by first generating
immunosuppression at the local lymph node site.

Melanoma cells were found to express IL-10, which is capable of inducing Tr-
1 cells. Tr-1 cells represent another type of CD4+ regulatory cell type that

can induce T-cell anergy and suppression of immune responses. It works
primarily via the production of high levels of IL-10 and TGFR (58,59).

PD-L1 (B7-H1) is the ligand of the T cell checkpoint inhibitory receptor PD1. It

is capable of inhibiting T-cell function and inducing T-cell “exhaustion”.
PD-L1 was found to be expressed in 22 of 22 melanoma biopsy samples (60).

f) Hijacking physiological systems for organ metastasis:

By EMT, carcinoma cells can escape regulatory influences from the
subendothelial ECM. In an organ environment, such as lung or liver, they can
make use of the reversion of EMT. This MET serves to organize the carcinoma
cells themselves and their microenvironment to generate carcinoma-derived
metastases. Two examples will be given:

1. Example: Signaling across distances via chemokines and their respective
cell surface receptors. This is a physiological principle that can be hijacked by
cancers. One of the more intriguing aspects of cancer metastasis is the
predeliction of certain cancers for specific target tissue sites. This is especially
true for breast cancer which attracted the attention of S Paget more than
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hundred years ago. It now has become clear that breast cancer cells often
express chemokine receptors, such as CXCR4. These receptors become
stimulated via their chemokine ligand CXCL12 produced by normal cells from
the sites of metastatic spread. Blocking the interaction between CXCR4 on a
breast cancer cell line and its ligand CXCL12, produced by lung tissue, exerted
a strong anti-metastatic effect (61).

2. Example: Bone metastases. The physiological balance between bone
formation and resorption is created by signaling between osteoblasts, which
assemble bone, and osteoclasts, which dissolve it. The osteoblasts release

RANKL, which acts via the RANK receptor displayed by osteoclast precursors

to induce the latter to mature into functional osteoclasts. The osteoblasts

may also secrete osteoprotegerin (OPG), which acts as a decoy receptor to
ambush RANKL before it can activate osteoclast precursors. Hence, the
balance between RANKL and OPG determines the net rate of bone growth
versus loss.

Breast cancer cells can dysregulate this physiological process and turn it into
a vicious cycle of osteolytic metastases. Release by a breast cancer cell of
parathyroid hormone-related peptide (PTHrP) causes osteoblasts to change
the mix of signals that they release: They increase RANKL synthesis and
decrease OPG synthesis. RANKL induces osteoclast precursors to mature into
functional osteoclasts. The latter undertake osteolysis. This causes bone
demineralization, exposes the ECM within the bone and results in liberation
of TGFB, Ca++, and IGF-1. IGF-1 and Ca++ cause cancer cell proliferation and
survival. The additional presence of TGFB induces the cancer cell to release
more PTHrP, resulting in a self-sustaining positive-feedback loop that has
been termed the “vicious cycle” of osteolytic metastasis (62).

E. REVERSION OF HEPATIC FIBROSIS

Liver fibrosis, a major health problem worldwide, is caused by the excessive
accumulation of ECM proteins including collagen that occurs in most types of

chronic liver diseases (63). Activated hepatic stellate cells (HSCs),
portal fibroblasts, and myofibroblasts of bone marrow origin have been

246



identified as major collagen-producing cells in the injured liver (64). Liver
fibrosis occurs in response to any etiology of chronic liver injury including
hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and
autoimmune hepatitis (64).

Liver fibrosis can be the precursor of liver cirrhosis (65). Defenestration and
capillarization of liver sinusoidal endothelial cells are major contributing
factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy
hepatocytes and stimulate the activation of HSCs. By interaction with tumor
cells, activated HSCs become involved in development of hepatocellular
carcinoma (HCC) (66).

Recent studies revealed that liver fibrosis is reversible (67). Activated HSCs
can revert to quiescent HSCs when causative agents are removed (67). In line
with this notion, it was shown that Newcastle disease virus represses
the activation of human HSCs and reverses the development of CCL4 induced

hepatic fibrosis in mice (66). Also, it was shown that overexpression of miR-

483 in vivo inhibits mouse liver fibrosis induced by CCl4. This miRNA targets
two pro-fibrosis factors, PDGF-8 and TIMP 2 (68).

F. AN EXAMPLE OF REVERSION OF DYSREGULATION IN LATE-STAGE

CANCER

We have studied the basic question of reversion of cancer associated
dysregulation in a mouse tumor model of advanced metastasized disease.
There is no doubt that the immune T-cell mediated effects observed required
a very special experimental model. The details of the model and of the
immune mechanisms behind it were recently reviewed (69).

The tumor model is based on many years of immunogenetic research about
resistance mechanisms in mice against the highly aggressive lymphoma
variant ESb. It was possible to transfer the resistance from an immunized
donor strain (B10.D2) via immune T-cells to the tumor susceptible host strain
(DBA/2) of tumor origin. The immune T-cells were targeting TAAs, minor
histocompatibility antigens and viral superantigens (vSAG-7, formerly known
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as Mis?) expressed by the tumor cells. The results of this Graft-versus-
Leukemia (GvL) model system are of basic importance because they suggest
that dysregulations, even in advanced stages of cancer, are principally
correctable and reversible.

i) REVERSION OF CACHEXIA AND COMPLETE REMISSION OF CANCER IN LATE-
STAGE DISEASE

Cachectic DBA/2 mice to be treated were bearing a subcutaneously
transplanted syngeneic tumor (ESb-MP lymphoma) of 1,5 cm diameter and
had macroscopic liver and kidney metastases. 4 weeks after tumor cell
transplantation, they could be successfully treated by a combination of
sublethal (5 Gy) irradiation followed by a single intravenous transfer of 20
million anti-tumor immune spleen cells from tumor-immunized resistant
allogeneic MHC-matched B10.D2 mice. The animals regained body weight
with reversal of cachexia after treatment.

We are just at the beginnings to understand molecular mechanisms of
cachexia (70-74).

ii) REVERSION OF TUMOR TISSUE pH FROM ACID TO NEUTRAL AS A FIRST
SIGN OF IMMUNOTHERAPY

Longitudinal therapy evaluation was performed by means of high-field
nuclear magnetic resonance (NMR). The spectra of phosphor metabolites of
primary tumors (PTs) were acquired in 40 min from anesthetized animals
using a 14-mm-diameter surface coil placed over the tumor.

The spectra from control animals demonstrated that tumor growth was
associated with an increase in phosphor-monoesters (PME) and inorganic
phosphate. The average tissue pH determined from the chemical shift of
organic phosphate showed an increase of mild acidosis in control tumors with
time. Spectra acquired 1 day before and 8 days after adoptive T cell
immunotherapy (ADI) demonstrated a dramatic decrease in PME, a decrease
in phosphate metabolites (necrosis and cell death) and a return to neutral
tissue pH. Changes associated with an effective GvL effect (decrease in PME,
increase in tissue pH) were detectable within 2-3 days.
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iii) PRIMARY TUMOR TARGETING, ENCAPSULATION, REJECTION FROM THE
SKIN, WOUND HEALING, AND SURVIVAL

Immunohistology of frozen tissue sections from PTs revealed details about
donor immune cell infiltration and capsule formation. Six days after cell
transfer, CD4+ T-cells could be seen in tumors of pre-irradiated animals,
either in association with blood vessels or deep in the tumor mass. At this

time point, a broad capsule of fibrous tissue between the tumor area
and the skin could be seen in which Langerhans cells and dermal DCs were
embedded as revealed by ATPase staining.

Three months after ESb-MP tumor inoculation and ADI treatment at day 28,
surviving mice still carried scar tissue from the PT. Or they had rejected the PT
from the skin showing wound healing underneath. This was followed by hair
growth and reconstitution of normal fur (74).

40% of the ADI treated mice survived long-term (more than 4 months).
Animals from non-treated controls, irradiation-only or ADI only groups, all
died within 35 days.

iv) ERADICATION OF LIVER METASTASES

The therapy effect against established liver macrometastases was evaluated
by immunohistochemistry of frozen liver tissue sections. A massive
infiltration by donor T cells was seen 6-12 days after ADI, which consisted of
CD4+ and CD8+ T-cells. Six days after ADI, large areas of necrosis could be
distinguished in metastases from live tumor tissue. Twenty-one days after
ADI treatment, neither live tumor tissue nor TILs could be detected. Sites of
previous metastases were replaced by scar tissue (74).

The complete eradication of late-stage metastases by ADI could be
demonstrated noninvasively in vivo by 'H-NMR micro-imaging using a Bruker
AM-300 spectrometer with a 7.0 T vertical magnet (74).

The effective immune rejection of advanced cancer in this GvL model and
the subsequent return to normal tissue homeostasis can be explained by
several types of cellular interactions:

i) donor CD4+ and CD8+ immune T-T cell interactions,
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ii) donor T cell-host macrophage immune cell interactions, and
iii) help of vR6 T cells with specificity for the tumor-associated MMTV-derived

viral superantigen vSAG-7 (69).

v) PROGRAMMED CHANGES IN LIVER GLYCOGEN AND LIPID METABOLISM
DURING TRANSIENT GRAFT-VERSUS-HOST AND GRAFT-VERSUS-LEUKEMIA
REACTIVITY

Glycogen in hepatocytes decreased dramatically 5 days after ADI. This
coincided with a high increase of large fat granules. Liver marker enzymes,
GOT and GPT, showed peak values also at day 5, coinciding with the loss of
glycogen. 8 days after ADI, the livers started to re-express glycogen and to
decrease their lipid content. Normalization of both parameters was seen after
day 30.

Immune system recovery from irradiation damage and liver regeneration
after immune cell mediated liver damage are likely explanations for the
reversibility of the metabolic changes and for the lack of GvH disease and
mortality in this effective cellular cancer immunotherapy model.

vi) LIVER RECRUITMENT OF BONE MARROW-DERIVED MESENCHYMAL STEM
CELLS AND THEIR DIFFERENTIATION INTO ADIPOCYTES

It is likely that at day 5 after ADI, - the peak of GvH/GvL induced stress and
toxicity -, the liver induced the recruitment of mesenchymal stem cells (MSCs)
from the bone marrow and/or from other adipose tissue. Stromal cell-derived
factor-1 (SDF-1) was found to increase the chemokine receptors CXCR4 and
CXCR7 in adipose tissue-derived mesenchymal stem cells (75).

Hepatic stellate cells (HeSCs) are liver-resident BM-derived MSCs located in
the space of Disse. Upon activation, the star shaped HeSCs can differentiate
either into myofibroblasts to produce ECM, or they can differentiate into
adipocytes. The lipid droplets at day 5 were observed primarily in HeSCs
(formerly designated as Ito cells). The liver regeneration apparently used the
lipid as fuel to produce the required energy. This may have involved resident
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HeSCs as well as recruitment of MSCs via the SDF-1/CXCR4 axis and their
activation and differentiation into adipocytes.

A similar situation was recently described for rats with acute pancreatitis
(76). The expression of SDF-1 was significantly increased in the injured
pancreas. The levels peaked on days 5-7 and began to decrease on day 10.
SDF-1 induced a dose-dependent migration of BMSCs in an in vitro transwell
migration assay. Furthermore, in vivo, the SDF-1/CXCR4 axis facilitated
migration of dye-labeled BMSCs and repair of the injured pancreas (76).

It is likely that the Hippo pathway was involved in the described
process of liver regeneration. The Hippo pathway plays pivotal and specific
roles in organ growth, cellular plasticity, and stem cell biology. These
phenomena are important for regeneration. Hippo regulates cell
proliferation, apoptosis, and stemness in response to a wide range of
extracellular and intracellular signals, including cell-cell contact, cell polarity,
mechanical cues, ligands of G-protein-coupled receptors, and cellular energy
status (77).

Dysregulation of the Hippo pathway has been observed in a variety of
cancers (78). As oncoproteins, YAP and TAZ, two major effectors of the Hippo
pathway, are frequently activated or highly expressed in cancer specimens.
Therefore, targeting the Hippo pathway, for instance by inhibition of YAP/TAZ
activity, has been suggested as a further approach of regulatory anti-cancer
therapy (78).

Liver regeneration is a complex and well-orchestrated phenomenon. The
process is associated with signaling cascades involving growth factors,
cytokines, matrix remodeling, and several feedbacks of stimulation and
inhibition of growth related signals (79).

F. TUMORS: WOUNDS THAT DO NOT HEAL ?

In 1986, the pathologist HF Dvorak expressed his conviction that tumors
were wounds that would never heal (41). He saw similarities between tumor
stroma generation and wound healing but something went wrong in tumors.

251



With the above described findings we argue against this hypothesis. A single
transfer of tumor-reactive T-cells from B10.D2 animals which had rejected
transferred ESb-MP tumor cells to 5 Gy pre-irradiated DBA/2 animals with a
heavy load of syngeneic ESb-MP tumor caused complete tumor remission in
most of the animals. Effector and memory T-cells with specificity for TAAs
and minor histocompatibility antigens were supported by a high frequency of

v36 T cells directed against a viral superantigen.

How could such a reversion of cancer-associated dysregulation function?
The cancer had already established a large primary tumor in the skin and
macroscopic metastases in liver and kidney and the animals were already
cachectic. The transferred T-cells had already been pre-immunized against
that same tumor and were equipped with high specificity and diversity. We
identified the following weaponry: Granzyme B, perforin, TRAIL, NO. Other
weapons of the immune system such as superoxides, HOCL, H202, FasL,
myeloperoxidase, complement and phagocytes are not excluded.

But these weapons must be directed, coordinated and adapted to the local
needs. It appears like the fight in the film epos “Star Wars” between two
systems: the good against the evil. We do not know the answer but one thing
is clear: the immune system gained control over a body nearly destroyed by
cancer.

Chapter VII

Key points:

1. Seven levels were selected to describe mechanisms of physiological
regulation and cancer-associated dysregulation.

2. The first concerns the level of DNA with six DNA repair mechanisms. It
also includes other mechanisms to keep normal tissue stem cell DNA
free from mutations. There exist cancer susceptibility syndromes with a
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greatly increased frequency of DNA mutations and defects in DNA
repair mechanisms.

3. Epigenetic mechanisms exerted through methylation of cytidine
residues also work at the level of the DNA but affect the configuration
of nearby chromatin and the shutdown of nearby genes. Such
mechanisms lead to loss of function of two major classes of cellular
genes: Tumor suppressor genes (TSGs) and DNA repair genes.

4. At the level of RNA, the focus lies on micro-RNAs (miRNA), noncoding
small RNAs which regulate about 50% of all protein-coding genes.
Every tumor has specific miRNA alterations which can be used as a
tumor-specific signature.

5. Mitochondria are important for energy supply, cell survival and cell
death. Changes of cardiolipin in cancer cell mitochondria lead to energy
waste and to anaerobic glycolysis causing acidification of tissue pH, a
phenomenon correctly described by O Warburg in 1930.

6. The next levels of regulatory importance are the cell’s plasma
membrane, the extra-cellular matrix, the microenvironment (wound
healing versus cancer) and aspects of organisation of distant organ
metastases.

7. Two examples of reversion of dysregulation are being presented. One
concerns liver fibrosis, the other advanced metastasized cancer. In the
first example, reversion is mediated via the oncolytic virus NDV or via a
distinct miRNA. In the second example, reversion of cancer and its
metastases in late-stage disease, including reversion of cachexia is
mediated, via immune T-cell transfer, by the immune system.
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Table 45 Milestones of Research in Physiology and Medicine Part|

1901 E von Behring* Serum therapy, Diphteria

1904 IP Pawlow* Physiology of Digestion

1905 R Koch* Research on Tuberculosis

1912 A Carrel* Research on Organ Transplantation
1913 CRichet* Research on Anaphylaxis
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1920 A Krogh* Capillary-motoric regulatory mechanisms
1922 OF Meyerhof* Relationship between O, consumption and

lactate production by muscles

1923 F Banting* Discovery of Insulin

1930 K Lansteiner* Discovery of the Blood Groups

1931 O Warburg* Nature and function of oxydative enzymes
1935 H Spemann* Role of an organisator in embryogenesis
1936 HH Dale* Chemical signal transmission in neurons
1945 A Fleming* Discovery of Penicillin

* Nobel Laureats

Table 46 Milestones of Research in Physiology and Medicine Part I

1947 CF Cori* Metabolism of glycogen
1953 HA Krebs* Discovery of the citric acid cycle
1959 S Ochoa* and A Kornberg* Mechanism of biological synthesis of
RNA and DNA
1964 KBloch* and F Lynen* Mechanism and regulation of the metabolism
of cholesterin and fatty acids
1968 RW Holley*, HG Khorana* and MW Nirenberg*
Interpretation of the genetic code and its function in protein synthesis
1991 E Neher* and B Sakmann* Direct demonstration of ion channels in cell

membranes and signal transmission
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2001 L Hartwell*, T Hunt* and P Nurse* Control of the cell cycle
2006 AZ Fire* and C Mello* Discovery of RNA Interference
2012 J Gurdon* and S Yamanaka* Re-programming of differentiated cells

to pluripotent stem cells

* Nobel Laureats

Table 47 Examples of levels of dysregulation in cancer

A Intra-cellular B Extra-cellular

- Genetic - Glycocalyx/ECM

- Epigenetic - Tumor microenvironment
- miRNA - Metastatic organ

microenvironment

- Transcriptional networks - Innate immunological control

- Metabolic - Adaptive immunological control
- Energetic/Mitochondrial - Nutritional

- Plasma membrane - Hormonal

- Signal transduction - Neuronal
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Table 48 Examples of documented reversions of dyregulations

i) Immune system mediated

cachexia reversion

primary tumor rejection

tumor tissue pH correction

wound healing after primary tumor rejection
liver metastasis eradication

liver regeneration

ii) other means
reversion of liver fibrosis via oncolytic NDV treatment

reversion of liver fibrosis via miRNA treatment
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CHAPTER VIII. POTENTIAL NEW TARGETS FOR THERAPY:

HOST CELLS AND THE STROMAL SUPPORT NETWORK

This Chapter tries to elucidate potential new targets for therapy. The
targets are dysregulatory mechanisms described in the previous Chapter. The
aim is to derepress epigenetic dysregulation in cancer cells and to interrupt
the support of cancer provided by host cells and stroma network.

A. TARGETING EPIGENETIC DYSREGULATION

The most characterized mediators of epigenetic inheritance are gDNA
methylation and histone posttranslational modifications. These processes
cooperate to alter chromatin state and genome transcription. Different
“epigenetic drugs” are able to revert such “epimutations” (1). Drugs that
reverse DNA methylation, such as 5-azacytidine and 5-aza-2’-deoxicytidine
and histone deacetylase inhibitors that target the histone deacetylation
component of gene silencing are already in the clinic (2,3) and approved by
the FDA for certain diseases.

A randomized controlled trial with azacytidine was performed in patients
with myelodysplastic syndrome (4). The encouraging results indicate that at
least some of the clinical effects were due to true reversal of epigenetic
targets: i) clinical efficacy was accomplished at far lower doses than the ones
initially used, ii) emerging data suggest that the efficacy of the aza-cytidines
correlates with the acute reversal of gene silencing (5). Feasibility for
prolonged drug treatment regimens appears possible for the aza-cytidines (6).

Epigenetic mechanisms play an important role in the regulation of
tumorigenesis. Hypoxia-induced epigenetic changes may be critical for the
adaptation of cancer cells to the hypoxic microenvironment of solid tumors. L
Poellinger demonstrated that inhibition of the H3K9 methyltransferase G9A
(by the small molecule inhibitor BIX-01294) attenuates oncogenicity and
activates the hypoxia signaling pathway (7). In similar ways tumor cells may
adapt to all kinds of oxidative and metabolic stress conditions (8).
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The group of TW Mak is studying new ways to combat cancer: targeting
metabolic adaptations, manipulating a cancer cell’s response to excessive
oxidative stress, and exploiting aneuploidy (9).

The epigenetic machinery affects not only protein-coding genes but also
expression of miRNAs (10). miRNA expression is regulated by multiple
transcriptional networks as well as by the epigenetic machinery. Also,
miRNAs can themselves repress key enzymes that drive epigenetic
remodeling. miRNAs can directly modulate gene transcription in the nucleus
through the recognition of specific target sites in promoter regions.

Regulatory circuits linking epigenetics and miRNAs have a major impact in
genome transcription and cell physiology. Tumor-associated aberrations in
the miRNA or epigenetic machineries are widely distributed in human cancer.
We are only beginning to understand their relevance in diagnosis, prognosis
or therapy (10).

The era of epigenetics thus is an exiting one and will have a major impact on
cancer control.

B. TARGETING HOST CELLS HELPING EXTRAVASATION AND
METASTATIC NICHE FORMATION

i) HOST-TUMOR CELL INTERACTIONS

Many cancer cells, including cancer stem cells, that are carried through the
circulation form small aggregates (microthrombi) that lodge by passive
mechanical or active mechanisms in arterioles and capillaries of various
tissues. Platelets and the coagulation system have been shown to promote
survival of circulating tumor cells (CTCs) in the bloodstream by conferring
resistance to the shear stress and to attack from natural killer cells (11).

Platelet activation has been associated with EMT, while Tissue Factor (TF)
protein expression by cancer cells correlated with hypercoagulable state and
metastasis (12). Platelets were also found to promote or maintain the state
of EMT on CTCs through secretion of TGFR in response to CTC activation (13).
Platelets also secrete CXCL5 and CXCL7 to recruit granulocytes (14) and
govern pre-metastatic tumor communication to bone (15). Two drugs, aspirin
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and a P2Y12 inhibitor, were found capable of attenuating platelet-induced
ovarian cancer cell invasion (16).

Studies from B Qian et al (17) suggest that a distinct population of CD11b+
macrophages may recognize emigrating tumor cells and assist them with the
extravasation process. After gaining access to the underlying tissue
parenchyma, extravasated tumor cells establish reciprocal signaling networks
with stromal cells to promote their own growth. Recruitment of
monocytes/macrophages by tissue-factor (TF)-mediated coagulation was
found to be essential for metastatic cell survival and premetastatic niche
establishment in mice (18). M2/repair-type macrophages predominate in
human cancers and actively stimulate tumor growth. Targeting the
modulation of M2/repair-type macrophages into M1/kill-type macrophages
would be a breakthrough (19).

Oxygen sensing prolyl-hydrolyse (PHD) proteins by T cells have been
described to be involved in establishing an immunologically tolerant
metastatic niche in the lung (20). Pharmacologic inhibition of PHD proteins
limits tumor colonization of the lung (21). Anti-tumor effects can also be
achieved by supplemental oxygenation. This would weaken the hypoxia-A2-
adenosinergic immunosuppression in the tumor microenvironment (22).

Hepatic stellate cells (HSC) in the space of Disse play an important role for
induction of a pre-metastatic niche in the liver (23). They become activated
by acidic tumor microenvironment and promote the metastasis of
hepatocellular carcinoma (HCC) via osteopontin (23). PDGF receptor-o
(PDGFRa) and TGFB are required for HSC activation during liver metastasis.
PDGFRa promotes TGFR signaling by regulation of TGFB receptors (24).

Other findings suggest that HSCs play an important role in liver mestastasis
of colon cancer cells by the action of the SDF-1/CXCR4 axis. Blockade of this
axis would be a target for antimetastatic therapy (25). Interestingly, the
Chinese herbal compound “Songyou Yin” was found to attenuate hepatoma
cell invasiveness and metastasis through downregulation of cytokines (IL-6)
and growth factors (TGF-B8, VEGF, hepatocyte growth factor) secreted by
activated HSCs (26). Inhibition of the SDF-1/CXCR4 axis was also reported to
be possible by kisspeptin-10 (KP-10). KP-10 also inhibited in MCF-7 breast

cancer cells EMT (27).
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KP-10 was also demonstrated to be capable of inhibiting the Warburg effect
in breast cancer. By activating the Smad signaling pathway, KP-10 induced
mitochondrial injury (28).

Another potentially interesting target may be Tissue-Inhibitor-of-
Metalloproteases (TIMP). Pancreatic premalignant lesions were reported to
secrete TIMP-1. This then activates HSCs via CD63 signaling to create a pre-
metastatic niche in the liver (29).

Activated HSCs also play an important role in liver fibrosis. As reported in
Chapter VII, reversion of liver fibrosis could be achieved, in model systems, by
treatment with oncolytic virus (NDV) and by treatment with a distinct miRNA.

ii) THE USE OF MABs OR SIMs

a) Capillary endothelial cells may be targeted by anti-VEGF and anti-VEGF-R
antibodies, small molecule VEGF-R inhibitors, VEGF-Trap, Ang2/Tie2 blocking
antibodies as well as by endogenous angiogenesis inhibitors and inhibitors of
epithelial precursor cell (EPC) recruitment.

b) Pericytes may become inhibited by anti-PDGF antibodies, PDGF-R
inhibitors and inhibitors of Ang-1/Tie2 signaling.

c) Fibroblasts may become inhibited by inhibitors of HGF or its receptor c-
Met. This may also be true for inhibitors of CXCL12/SDF-1, PDGF/PDGF-R or of
fibroblast activation protein (sibrotuzumab). Innate immune cytokines may
also be interesting agents to regulate fibroblast behavior (30).

d) Neutrophils, macrophages and mast cells may be affected by anti-
inflammatory inhibitors, cytokine and chemokine inhibitors and by inhibitors

of NF-kB, IKK and TNF-0..

e) Lymphatic cells may be targeted by inhibitors of VEGF-C, VEGF-D, VEGF-R3,
or PDGF/PDGF-R.

Several strategies aim at blocking immunosuppression by Tregs:
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i) elimination by targeting CD25 (IL-2Rqal) via mab or via an IL-2-toxin fusion
protein (Ontak),

ii) elimination by lymphocyte depletion with cytotoxic drugs, such as low
dose cyclophosphamide,

iii) blocking the mediators of suppression, e.g. IL-10, TGF-R and CTLA-4,
iv) activation of DCs to express IL-6 that will block the function of Treg,

v) targeting TLR8 expressed on Treg to block their inhibitory function.

Cancer treatments known as immune checkpoint inhibitors unleash the
immune system to attack cancer. New immune checkpoint inhibitor therapies
prevent the PD-L1 checkpoint protein from attaching to the PD-1 checkpoint
receptor. This is a perfect example of a clinically successful interference with
a cancer-derived dysregulation of the adaptive specific anti-tumor T-cell
response.

Since the first remarkable reports of immune checkpoint inhibitors
shrinking advanced melanoma in 2011, research in this area has taken off at
an incredible pace. In 2016, the FDA approved five new uses for immune
checkpoint inhibitors: lung cancer, head and neck cancer, bladder cancer,
kidney cancer, and Hodgkin lymphoma (HL). In 2017, ASCO has named
Immunotherapy 2.0 as the advance of the year!

Further details about progress obtained with checkpoint inhibitors have
been mentioned in Chapter IV (Immunotherapy) and Chapter VI (Combination
Therapies).

C. TARGETING INVADOPODIA, INVASION ENZYMES AND THE ECM
AT THE INVASION FRONT

i) TARGETING INVADOPODIA
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The vascular basement membrane (BM) is a thin and dense cross-linked ECM
layer that covers and protects blood vessels. New evidence has
mechanistically linked the breaching of vascular BM with the formation of
specific cellular micro-domains known as podosomes and invadopodia (31).

Invadopodia are actin-rich organelles that protrude from the plasma
membrane and contact and locally degrade the ECM. They represent key
cellular structures that are used to coordinate and regulate the various
components of the process of cancer invasion (32). Invadopodia formation
accompanies the mesenchymal mode of migration on firm matrices and is
facilitated by Racl activation (33). Invadopodia represent a new therapeutic
target to block cancer metastasis (34).

It is satisfying to remember that oncolytic NDV targets exactly Racl (35) as
we described in Chapter V.

ii) TARGETING INVASION ENZYMES

The plasminogen system has been implicated in clot lysis, wound healing,
tissue regeneration, cancer and many other processes that affect health and
disease. The urokinase receptor uPAR was originally thought to assist the
directional invasion of migrating cells. Now it becomes increasingly evident
that this proteinase receptor elicits a plethora of other cellular responses
(36).

Urokinase plasminogen activator (uPA): The inactive, pro-enzyme pro uPA is
released by stromal cells and binds to its cognate receptor (uPAR) displayed
at the surface of a cancer cell at the invasion front. This binding converts the
pro-enzyme into active uPA which then converts the serum protein
plasminogen from local blood vessels to the active plasmin form. The latter
functions as a protease to cleave pro-enzyme forms of matrix
metalloproteases (pro-MMPs) into active MMPs and latent TGF-B1 into its
active form.

Recently, novel selective inhibitors of uPA have been discovered (37).

iii) INHIBITION OF ECM DEGRADATION
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Disruption of the basement membrane is a hallmark of malignancy.
Proteolytic enzymes of many classes, implicated in tumor cell invasion (uPA,
plasmin, cathepsins, MMPs), contribute to matrix degradation. Other matrix-
degrading enzymes such as heparanase, which cleaves heparin sulfate
proteoglycans, and hyaluronidase, which cleaves hyaluronic acid, have also
been associated with tumor progression and invasion.

L Liotta observed that metastatic potential correlates with the degradation
of type IV basement membrane collagen by metal-dependent enzymes (38).
These metalloproteinases (MMPs) are now recognized as MMP-2 and MMP-
9.

MMPs are overexpressed in most types of cancer and correlate with
advanced tumor pathology. An increase in their expression and activity often
correlates with tumor angiogenesis, metastasis, and poor prognosis. Most
MMPs are not expressed by the cancer cells themselves but instead are
expressed and activated in the stroma. Recent data indicate that the linkage
between matrix remodeling, adhesion, and growth signaling may drive soft
tiisue sarcoma bone metastases. This can be the basis for prognostic and
therapeutic strategies (39).

An example of an MMP that promotes carcinogenesis is MMP-
3/stromelysin-1. Overexpression of MMP-3 alters epithelial cell adhesion by
cleaving E-cadherin, inducing EMT, and promoting premalignant and
malignant lesions. MMP-3 induces Raclb, an alternatively spliced variant of
Racl, which then stimulates increased levels of mitochondrial reactive
oxygen species (ROS) and thereby DNA oxidative damage (40).

Development of inhibitors of MMPs has been fraught with challenges.
Current research employs innovative approaches for drug delivery methods
and allosteric inhibitors (41).

iv) ENZYME INHIBITORS

Inhibitors of matrix turnover include suramin and dalteparin. Inhibitors of
proteases, such as uPA and MMPs have already been delt with.

Another enzyme of great significance for ECM degradation is heparanase
(Hpa). This endo-RB-D-glucuronidase which cleaves heparan sulfate side chains
from HSPGs on cell surfaces and from the ECM, has pro-metastatic, pro-
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angiogenic and pro-coagulant functions (42). The search for selective Hpa
inhibitors has been long and sometimes frustrating.

Phosphomannopentaose sulfate (PI-88) is a drug that suppresses
angiogenesis by downregulating Hpa and VEGF (43). The administration of PI-
88 at 160 mg/d was reported to be safe, well tolerated and to confer
significant clinical benefits for patients with HCC (44).

v) MABS AS ECM CONTACT INHIBITORS

Tumor cell contact to ECM is often mediated via integrins. Among these,
integrins owvR3, avB5, o5R1, or 06R4 seem particularly suited as targets for
contact inhibition by respective mabs.

The interaction of cells with the ECM can be facilitated (e.g. CD44, integrin
ligands osteopontin and periostin) or inhibited (e.g. the ECM glycoprotein
tenascin). Thus, mabs against osteopontin or periostin might be usefull to
inhibit facilitation of contacts of tumor cells to the ECM.

D. TARGETING COMMUNICATION BETWEEN SEED AND SOIL
i) CANCER CELL-DERIVED EXOSOMES

Exosomes (endosome derived vesicles) are small (30- to 100-nm) vesicles of
cells that carry a variety of bioactive molecules. Such molecules include
proteins, lipids, RNA, as well as DNA molecules. They serve important roles in
cellular communication, both locally and distally.

The exosomal process is abnormal in cancer (45). Glypican-1 was reported
to identify cancer exosomes and to detect early pancreatic cancer (46). In
2001, tumor-derived exosomes were proposed as a souce of shared tumor
rejection antigens for CTL cross-priming (47).

Exosomes appear to play a significant role in different stem cell niches such
as the mesenchymal stem cell niche, cancer stem cell niche and pre-
metastatic niche. Cancer cell-derived exosomes participate in crucial steps of
metastatic spread of a primary tumor, ranging from oncogenic
reprogramming of malignant cells to formation of pre-metastatic niches. Such
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effects are achieved through the mediation of intercellular cross-talk and
subsequent modification of both local and distant microenvironments in an
autocrine and paracrine fashion.

Exosomes also orchestrate multiple systemic pathophysiological processes.
Examples are coagulation, vascular leakiness, and reprogramming of stromal
recipient cells to support pre-metastatic niche formation and subsequent
metastasis. Pancreatic cancer-derived exosomes were taken up by liver
Kuppfer cells and caused hepatic stellate cell activation to generate a fibrotic
environment with immune cell infiltrates that favours metastases (48).

There is a potential for clinical application of cancer cell-derived exosomes,
both for diagnostic as well as for therapeutic purposes (49 -54). Exosomes
play also a role in immune regulation (51). Dendritic cell-derived exosomes
have been proposed as immunotherapies in the fight against cancer (52).
Efficacy of vaccination with tumor-exosome-loaded dendritic cells combined
with cytotoxic drug treatment has been reported in pancreatic cancer (55).

In 2013 JE Rothman, RW Schekman and TC Siidhof received the Nobel Prize
for Physiology or Medicine for their “discovery of a machinery regulating
vesicle traffic, a major transport system in our cells”.

iii) miRNA

microRNA (miRNA) are small highly conserved noncoding RNAs. They play an
important role in the complex network of gene regulation, in particular with
regard to gene silencing. miRNAs regulate gene expression in a highly specific
way at the post-transcriptional level. miRNAs normally consist of 21 to 23
nucleotides (nt), but sometimes they can also consist of hundreds of nts.
miRNA binds to the 3’untranslated region (3"-UTR) of mRNA of a distinct
target gene. This leads either to inhibition of translation of such mRNAs or to
its degradation. miRNAs were first described 1993 but the name was
introduced only in 2001. In human, more than 1.800 different miRNAs have
been identified. They can be checked in a respective library (miRBase.org).

Recent research indicates that some miRNAs are important for maintaining
pluripotency and self renewing capacity of embryonal stem cells (56-58). The
following examples demonstrate the relevance of miRNAs for cancer.
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microRNA-335 was reported as metastasis suppressor targeting the formin
family of actin nucleators (59). It was also reported as a potential suppressor
of metastasis and invasion in gastric cancer (60). Furthermore, it promoted
cell proliferation by directly targeting Rb1 in meningiomas (61) .

microRNA-145 was reported to regulate cancer stem-like properties and
EMT in lung carcinoma-initiating cells (62). In these cells, miR-335 suppressed
proliferation by targeting OCT4 (63). It also was found to inhibit lung cancer
cell metastasis (64). Epigenetic silencing of miR-145-5p contributed to brain
metastasis (65).

microRNA-302 increased reprogramming efficiency via repression of two
transcription factors, NR2F2 and OCT4 (66). Anti-miR-302 inhibitor abrogated
the production of hyaluran-CD44v3-mediated cancer stem cell functions (67).

Every tumor has specific miRNA alterations, i.e. some are overexpressed
and others downregulated. These altered miRNAs can be used as tumor-
specific signature. Specific miRNAs can be targeted using oligonucleotide
sequences corresponding to the altered miRNAs. These are referred to as
“antagomirs”. In this way, one could design targeted therapies for
personalized medicine in patients (68).

iv) TARGETING HIJACKED PATHWAYS OF ORGAN METASTASIS

Lack of environmental oxygen at the tumor site leads to activation of the
transcription factor HIF-1. This factor induces genes like erythropoietin or
VEGF with a role in neo-angiogenesis. The integrin ligand osteopontin is
another mediator of angiogenesis which is secreted into the blood circulation.
HIF-1 has been described as a master regulator of breast cancer niche
formation. Hypoxia also induces lysyl oxidase which is critical for bone
marrow cell recruitment and pre-metastatic niche formation.

Tumor signaling via PD1 on T cells and expansion of MDSCs are major
mechanisms of tumor immune escape. CXCR2 was identified as a novel target
for modulating tumor immune escape (69).

MDSCs and TAMs form an important component of the hypoxic tumor
microenvironment. Hypoxia caused a rapid, dramatic, and selective up-
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regulation of PD-L1 on MDSCs, macrophages, dendritic cells and tumor cells
(70). Blockade of PD-L1 under hypoxia enhanced MDSC-mediated T cell
activation and was accompanied by the down-regulation of MDSC-secreted
IL-6 and IL-10. Neutralizing mabs against IL-10 under hypoxia abrogated
suppressive activity of MDSCs. Simultaneous blockade of PD-L1 along with
inhibition of HIF-1o0 may represent a novel approach for cancer
immunotherapy.

Proteins of relevance for the metastatic niche formation appear as
promising targets. These can be transcription factors (e.g. HIF-1), growth
factors (e.g. VEGF, TGFB, HGF), chemokines (e.g. CCL2) and their receptors
(e.g. CXCR4), enzymes (e.g. lysyl oxidase) or enzyme inhibitors (e.g. TIMP-1)
and cytokines (e.g. TGFB, IL-6). We must be aware, however, that these
targets derive from normal physiological regulatory systems. Therefore, there
targeting should be done only transiently and in critical steps of tumor
development.

Building of the metastatic niche is facilitated via SIPR1-STAT3 signaling to
recruit MDSCs (71). An immunosuppressive environment is promoted by
carbonic anhydrase IX (72) and complement C5a receptor (73). TIMP-1 creates
a pre-metastatic niche through SDF-1/CXCR4-dependent neutrophil
recruitment (74). Neutrophils compete with monocytes for access to the
chemokine CCL2 for control of the metastatic niche (75). The liver
environment appears tolerogenic with regard to antigen-presenting cell
function (76). This might also facilitate liver metastasis.

A balance between TIMP-1 and MMP-9 plays an important role for the
viability of alveolar macrophages (AMs) in chronic obstructive pulmonary
disease (COPD). A chinese drug, in form of Liuweibuqui capsules, was
reported to be capable to inhibit the release of inflammatory cytokines,
promote viability in AMs, and regulate the expression of MMP-9 and TIMP-1
(77).

TGFRB is an important signaling molecule. It is a local multifunctional
cytokine and can exert direct anti-inflammatory effects by inhibiting Thl
helper cells. It also plays an important role in wound healing. In addition to its
effects on epithelial proliferation, survival, and differentiation, it is also an

important regulator of the cell-matrix interaction (78). It may also play a role
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in the myofibroblastic stromal reaction and lymph node metastasis in
invasive breast carcinoma. Future research on fibrocytes, myofibroblasts,
TGFR and mechanisms of stromal changes are essential in future and may
lead to new treatment approaches (79).

Chapter VIII

Key points:

1. Based on the previous chapters, numerous potential new targets for cancer
therapy are being pointed at.

2. One direction concerns the interference with epigenetic mechanisms of
cancer cell dysregulation.

3. The others aims at interruption of cancer support from host cells and from
the stromal network.

4. The interference with host support of tumor growth and metastasis
represents a change of paradigm: away from the focus on the tumor with all
its variability.

5. Target directed interference can be exerted trough the use of monoclonal
antibodies or various inhibitory molecules, including TKls, enzyme inhibitors
or miRNAs.
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CHAPTER IX FROM THE PAST TO FUTURE DIRECTIONS OF

CANCER THERAPY

A. FROM THE BEGINNINGS TO STANDARD THERAPY

This book can be considered like a journey. A journey through history of
cancer treatment and cancer research. Also a journey through a variety of
different research areas. From surgery to physical treatment (radiotherapy),
further to chemical treatment (chemotherapy), then to physiological
treatment (hormone therapy).

These standard therapies of cancer were developed about 100 years ago. At
that time nothing was known about cancer metastasis and very little about
tumor-host interactions as exemplified by tumor immunology. So it is not
surprising that in absence of a scientific basis, various concepts of treatment
developed into dogmas which later turned out to be wrong.

B. FASCINATING DISCOVERIES OF THE LAST 60 YEARS FROM
CANCER RESEARCH

Meanwhile cancer research has led to discoveries which provide a much
deeper understanding of molecular and cellular processes and their
physiological regulation or dysregulation in case of cancer development. Our
journey takes us from the beginnings of molecular biology to the discovery of
oncogenes and tumor suppressor genes. This leads to new insights into the
cell cycle, its clock-wise function and control. The decision concerning cell
growth or quiescence, cellular senescence or programmed cell death is taken
at the restriction (R) point during the G1 phase.

Our journey includes auto-biographical notes because this was the time
period that | can witness from my own scientific career. Cancer metastasis,
tumor immunology and cancer immunotherapy were three research fields
which in the 1970s were still very much in the dark. Since | felt that these
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areas were of great relevance for the future development of cancer
treatment, | tried to get engaged with these questions.

A milestone discovery in metastasis research was what is called the EMT:
the transition of an epithelial cancer cell into a mesenchymal phenotype. This
environmental signal-induced change of phenotype is based on epigenetic re-
programming. It facilitates cancer cell invasion and dissemination via the
blood circulation or through the lymphatic system. Once arrived in an organ
with a suitable “soil”, the establishment of secondary growths (metastases) is
facilitated by a reversion of EMT called mesenchymal-to-epithelial transition
(MET).

Tumor virologists, molecular biologists and cell biologists eventually found
out that products from oncogenes and tumor suppressor genes often function
via affecting signal transduction by cellular growth factor receptors. This then
became the area of so-called targeted therapies. While cytostatic drugs
interfere with tumor cell proliferation by inhibiting enzymes within the tumor
cells, targeted therapies interfere with transduction of signals from outside
the cell via growth factor receptors. Tumor characteristic protein tyrosine
kinases associated with such receptors are inhibited by small molecule
inhibitors developed by pharmaceutical companies. Gleevec was the first
approved drug of this kind.

C. IMMUNOTHERAPIES ARISING
i) MONOCLONAL ANTIBODIES

Like the research of molecular biology and virology, the research of
immunology in the last 60 years had a fascinating and successful
development. This is witnessed by many Nobel Prizes for discoveries
concerned with the genes and proteins that characterize the antigen-specific
receptors of B- and T-lymphocytes. In both cases the high diversity and
antigen specificity is generated from a restricted germline pool of variable
and constant domain genes. Somatic rearrangement mechanisms during B-
cell development in bone marrow and T-cell development in the thymus
enabled in vertebrates the development of the adaptive arm of the immune
system with its billiards of different receptor specificities.
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The first clinically relevant success story is that of the development of
monoclonal antibodies, which are products of B lymphocytes. The first FDA-
approved mab was trastuzumab (Herceptin). This antibody targets the cell
surface receptor HER2 expressed for instance by breast cancer cells.
Meanwhile dozens of therapeutic mabs are available for application in
patients with a large variety of cancer types.

The second clinically relevant success story turned up only in recent years:
the development of mabs targeting immune regulatory receptors on T cells,
such as CTLA-4 or PD-1. These receptors deliver negative signals to activated T
cells to stop their activity at the end of their response. Tumors are able to
hijack this physiological regulatory mechanism to their own advantage. They
thereby shut-off anti-tumor reactivity coming from tumor-infiltrating T cells.

The clinical application of checkpoint inhibitory mabs, that interfere with
this tumor immune escape mechanism, has resulted in a proportion of
melanoma and carcinoma cancer patients with an improvement of long-term
survival. Such results were received with great surprise because this had
never been achieved before, neither with cytostatic drugs nor with small
molecule inhibitors.

ii) IMMUNE T-CELLS

Further milestones from immunology came from research on T-cells and
Dendritic cells. The MHC restriction of cytotoxic T lymphocytes was
discovered in 1973, the genes coding for the TCR in 1984 and the first human
tumor-associated antigen (TAA) recognized by CTLs as a peptide-MHC
complex was identified in 1991.

The identification of HIV as the causative agent of the Acquired
Immunodeficiency Syndrome (AIDS) opened the way for therapeutic
targeting and also elucidated the importance of the immune system for
maintenance of general health. The discovery of Toll-like receptors (TLRs)
triggering innate immune reactivity as well as that of Dendritic cells
functioning as professional antigen-presenting cells (APCs) for T-cells were
further milestones in the new millenium.
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Adoptive T-cell transfer therapies involve allogeneic donor cell transfers to
achieve Graft-versus-Leukemia effects. They can also transfer autologous
immune T-cells, especially memory T cells from bone marrow.

A new recent development consists of modern gene transfer technologies
which allow to produce T-cells with transfected TAA-specific TCRs or with
chimeric TAA-specific receptors (CARs) consisting of antibody binding sites
fused to T cell receptor signaling chains.

iii) ANTI-CANCER VACCINES AND ONCOLYTIC VIRUSES

Immunotherapies based on T-cell immunity include active immunization
with cancer vaccines and adoptive cellular therapies. Oncolytic viruses (OVs),
also developed in the past 60 years, are very promising new biological agents.
They have the capacity of tumor selective replication and of tumor selective
toxicity.

They also support the development of post-oncolytic anti-tumor immunity.
Therefore, the combination of OVs with cancer vaccines has its own logic.
Two types of such vaccines have been developed by our teams, ATV-NDV in
Heidelberg (1985-2005) and VOL-DC in Cologne (from 2010 up to now).

D. COMPARING IMMUNOTHERAPIES WITH OTHER THERAPIES
i) IMMUNOLOGICAL TOLERANCE

During evolution, the immune system evolved starting with innate
immunity mechanisms. These were able to identify, via innate immunity
recognition receptors (e.g. TLRs, RLRs) foreign from self-molecules and to
react against these.

Later, during vertebrate development, the adaptive immunity system
evolved. This is characterized by Ilymphoid organs specialized for
development of new cell types with a broad variety of cell surface receptors
for antigen recognition. Special recombinase enzymes were developed to
generate a great variety of new antigen-specific receptors from a set of

germline genes during somatic B- and T-lymphocyte maturation. Before
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these cells are allowed to leave their respective lymphoid organs, they are
selected against reactivity towards self antigens (proteins from the body's
own cells).

The term Horror autotoxicus was introduced by Paul Ehrlich at the
beginnings of the 20" century to describe that the humoral immune system
has developed mechanisms to avoid self destruction. In the 1950s, Sir
Macfarlane Burnet described a cellular mechanism for the avoidance of auto-
immune reactions and introduced for this the term self-tolerance.

In 2017, M Feuerer and colleagues described in Nat Immunol (1) that Treg
cells not only maintain self-tolerance. Their other function is to support organ
homeostasis by differentiating into specialized tissue Treg cells. A genome-
wide DNA-methylation landscape analysis revealed more than 11,000 regions
that were methylated differently in pairwise comparisons of tissue Treg cell
populations and lymphoid T-cells. Tissue Treg cells integrate multiple waves
of epigenetic reprogramming that define their tissue-restricted specialization

(1).

For cancer immunotherapy, this discovery means that Treg cells are by no
means an enemy to cancer-reactive T-cells. They help to maintain self-
tolerance and organ homeostasis.

The immunotherapies | dealt with for over 40 years did not interfere with
Treg cells and were always characterized by low side effects.

ii) IMMUNOLOGICAL MEMORY

We mentioned above already that immune system reactivity is based on
excluding anti-self reactivity. Sophisticated mechanisms of central and
peripheral tolerance serve this purpose. This is one advantage of
immunotherapy in comparison to other therapies with their side effects.

When comparing immunotherapy with other therapies there is another
characteristic difference, namely that of a memory function. Immunological
memory serves the purpose of obtaining long-term protection and long-term
health effects. The details of the immunological memory function are not yet

entirely understood but it is likely that they are connected to special niches in
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the bone marrow and to a state of regulation that is reminiscent to that of
stem cells.

Metabolic activity of T cells regulates and is regulated by cellular signaling
pathways and epigenetics (2). Thus, T cell longevity and function in
immunotherapy is profoundly influenced by metabolic regulation (2).
Another recent discovery is that of mitochondrial priming by CD28 (3). Early
CD28-dependent mitochondrial engagement is needed for T cells to remodel
cristae, develop enhanced spare respiratory capacity (SRP), and rapidly
produce cytokines upon restimulation. These are all cardinal features of
protective memory T cells (3).

Neither radiotherapy nor chemotherapy have a memory function. If the
cancer is not entirely destroyed, the remaining cancer cells, in particular the
cancer stem cells, can develop new growths.

iii) INDIVIDUALITY OF THE CANCER-REACTIVE MEMORY REPERTOIRE

When we analyzed the repertoire in breast cancer patients of bone marrow
derived memory T cells against TAAs, each patient showed a different pattern
of reactivities. There was a multitude of target molecules that were
recognized in individual patients. This did not cause any problem with side
effects.

This finding is of relevance not only with regard to the question of one or
multiple target antigens. The individuality of the immune memory repertoire
seems to mimic the individuality of the cancers that arise in patients.

iv) POLYSPECIFICITY

Another relevant question concerning future strategies of cancer
treatment relates to that of targeting one or multiple molecules, molecule
domains or molecule epitopes. This question is connected with that of
development of cancer resistance mechanisms.

Knowing that cancer is characterized by high heterogeneity and variability
and can adapt to challenges like targeted therapies by developing escape
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strategies, the question is how to cope with this situation. One idea was to
target a molecule such as a protein tyrosine kinase (TK) not just by one but by
two TKils.

Unfortunately, a TKI has side effects not much different from a cytostatic
drug. Let us assume that there are six types of side effects per TKI. The
addition of two TKIs may reduce the likelihood of resistance development
from the side of the cancer. But the cancer patient is exposed to 2x6 side
effects. Nobody can predict, in which way the side effects will develop in an
individual patient and possibly potentiate each other. At the end, the
situation may not be much better than with cytostatic drugs.

The situation is quite different with immunotherapy. Thanks to the
invention of immunological tolerance to self-tissues, immune T-cells reacting
towards TAAs produce only low level side effects. Only when interfering with
immune regulatory mechanisms there is the risk of development of
autoimmune mechanisms.

E. TRENDS TOWARDS PERSONALIZED AND INDIVIDUALIZED
THERAPIES

i) PERSONALIZED TREATMENTS BASED ON GENOMICS

There exists at present a development towards so-called personalized
medicine. In medical oncology, this means individual tumor typing by
procedures such as genomics, proteomics or pharmacogenomics and then
adjusting the currently available drugs to the derived patterns of signaling
pathways. In this way the drugs could be better targeted to subsets of
patients. These should be responding according to respective algorithms. This
would be a step forward, no doubt.

But the effort is enormous and expensive. There exist already
chemosensitivity tests ex vivo which allow to estimate the likelihood of drug
response for a patient’s tumor cells. Although such tests are less expensive
than those mentioned above, they have not been introduced into standard
care.
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ii) INDIVIDUALIZED TREATMENTS BASED ON IMMUNOLOGY

The concept of this kind of treatment is fundamentally different from that
of personalized treatments. Each patient receives his own drug in form of a
patient-derived autologous anti-cancer vaccine.

The rationale is multifold: Apart from the individuality of mutation-derived
TAAs and the individuality of the cancer-reactive T cell memory repertoire,
there exists the individuality of MHC molecules and the phenomenon of MHC
restriction of TAA recognition by T-cells.

iii) OVs HELPING TO BREAK CANCER RESISTANCE MECHANISMS

Oncolytic viruses (OVs), in particular NDV, were shown to be able to break
tolerance of a tumor-specific T helper cell line. NDV was also able to exert
oncolytic activity against hypoxic cancer cells and to induce immunogenic cell
death (ICD). In addition, NDV targets Racl protein, which is important for
glioblastoma migration and invasion.

The combination of OVs with immunotherapies thus has great potential for
the future of cancer therapy.

F. FUTURE IMMUNOTHERAPY
i) ADAPTATION OF STUDY PROTOCOLS AND EVALUATIONS

Immunotherapies are different from all other kinds of cancer therapies.
They obey different rules, have other kinetics and should be evaluated in a
different way.

To see the difference, let us compare the sophisticated system of foreign
antigen recognition and avoidance of self-reactivity (via central and
peripheral tolerance mechanisms) developed by evolution with that
developed by chemists and pharmacists to fight cancer: cytostatic drugs and
small molecule inhibitors.

The latter have tried to develop drugs which should be as cancer-specific as
possible. The tremendous list of side effects generated in cancer patients and
documented in this book unfortunately speaks another language. One
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wonders why certain drugs from the past became approved at all. Perhaps
because there was no other treatment available. All these drugs were
developed without regarding their effect on the immune system. The
dominating paradigm in those times was a focus on cancer and to cause as
much damage to it as possible without considering the host.

Nowadays, we are in an entirely different situation with all the new
discoveries and inventions and yet these old drugs are still being used.

We have very strict regulations before a new drug or treatment can be
approved. These new regulations did not exist when the old cytostatic drugs
were approved.

So there exists a discrepancy between the judgement towards those old
drugs, with their lack of rational design and lack of proof of efficacy according
to modern standards, and the hurdles which new drugs or treatments have to
take. This dilemma neads to be solved in the future in order to replace drugs
with side effects of grade 3 and 4 by immunotherapies with side effects
ranging between grade 1 and 2.

Monitoring the immune status and the immune reactivity of a cancer
patient should become standard procedure, before and during cancer
therapy. Immune parameters which already are of predictive relevance, for
instance in colorectal carcinoma, should be introduced. A computational
approach has been developed to comprehensively analyse tumor immunity
(4). Radiologists may learn to distinguish immune reactivity from other
phenomena.

The imaging manifestations in patients on immune therapies have just been
reviewed (5). They appear to be distinct from those typically seen with
conventional cytotoxic therapies. Patients on immune therapies may
demonstrate delayed response, transient tumor enlargement followed by
shrinkage, stable size. There may also be initial appearance of new lesions
followed by stability or response. These newer patterns of response to
treatment have rendered conventional criteria such as WHO and RECIST
suboptimal in monitoring changes in tumor burden. Newer imaging response
criteria such as immune-related Response Evaluation Criteria in Solid Tumors
(irRECIST) and immune-related Response Criteria (irRC) are being
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implemented in many trials to effectively monitor patients on
immunotherapies (5). Stable disease should be considered as a criterium for
response evaluation by immunotherapies.

Immunotherapies should get a chance to be evaluated in a situation in
which the patient’s immune system is still competent. This is more likely the
case in the adjuvant than in the advanced disease situation. In Germany, we
were able to convince ethical committees to agree to anti-cancer vaccination
in a variety of cancers in the post-operative adjuvant situation. This was
possible mainly because of a proven lack of severe side effects.

In most countries new therapies can only be tested in patients that have
already received standard treatment. These are usually late-stage patients
with reduced immunocompetence. Adoptive immunotherapies with
activated T-cells are more likely to function in this clinical situation than
active specific immunotherapies.

ii) IMMUNOTHERAPY AS NEW STANDARD TREATMENT

At present, cancer patients receive standard therapies like before.
Sometimes immunological agents like tumor-targeting mabs or checkpoint
inhibiting mabs are being added. This, however, does not mean that
immunotherapy has meanwhile become a standard therapy.

Evidence-based medicine has developed rules how to perform clinical
studies. These rules have their value in drug development.

Whether the same rules can be used for development of sophisticated
immunotherapies, such as multimodal immunotherapies, is, however,
questionable. This is not only a question of money and logistics. It is also a
question of principle.

Above we stated that each cancer has its own individual history of
development. Results from cancer genomics support this conclusion. We also
mentioned the individuality of the repertoire of cancer-reactive memory T
cells and the individuality of MHC molecules and their recognition by T cells.
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Considering these facts, one may wonder what sense it would make to
randomize patients into groups that either receive immunotherapy or not
and then to compare them. When biometricians developed those rules of
phase | to phase IV clinical studies, they were obviously not aware of the
facts of individuality.

During our journey through the history of development of different forms of
cancer therapy we have seen several developments that have led to dead
ends. Often these were due to a lack of knowledge and dogmatic thinking.

There is no guarantee that the future development of cancer therapy will be
devoid of dogmas and dead ends.

G. HOW TO REDUCE SIDE EFFECTS OF TREATMENT

This is the second of the three main objectives of this book. In Chapter VI
we provided examples of how to reduce side effects.

Sometimes a lower dose and other ways of application (e.g. metronomic
chemotherapy) may be sufficient. In other situations, a combination of
different types of therapy can cause synergistic effects, which then allow for
dose reduction.

In any case, physicians should become aware of not using drugs which can
cause grade 3 to 4 severe side effects. Such side effects destroy not only the
immune system and the proper functioning of organs. They destroy the mere
goal of any cancer therapy, namely to improve OS.

H. EFFICACY OF TREATMENT

Efficacy of treatment can be estimated in different ways. For instance by
calculating the percentage of patients who are alive at a defined time period
after treatment (e.g. 5-year survival rate). It could also be the rate of
progression-free or metastasis-free survival.

Overall survival (0S) is perhaps the most important parameter for the
individual patient. Benefits in OS have astonished oncologists when the first
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results came in with checkpoint inhibitory antibodies. Such a result is not so
astonishing for a tumor immunologist. Once the tumor-induced break has
been relieved by such mabs, the TILS can go on doing their job in killing tumor
cells via CTL activity and by surveilling the tumor and its metastases via
effector memory T cells. In contrast to cytostatic drugs, the effect of the
application of such mabs is rather long-lasting, which has been a further
surprise to oncologists.

For the cancer patient, quality of life (QoL) is another important aspect.
Since QoL is very much affected by the side effects of therapies, we have
discussed this issue intensively in this book.

I. APSYCHO-NEURO-IMMUNOLOGICAL PERSPECTIVE

Immunology is also of relevance for neuroscientists. They know that the
first defined cytokine, interleukin 1 (IL-1), activates a discrete population of
hypothalamic neurons. This interaction leads to the release of glucocorticoids
from the adrenal gland.

Lymphocytes also synthesize acetylcholine, the first formally recognized
neurotransmitter. There are now in the area between immunology and
neurobiology 37 cytokines and their receptors, at least 60 neurotransmitters
and over 50 neuroactive peptides (6).

Sleep has a critical role in promoting health. Neuroendocrine and autonomic
neural underpinnings link sleep disturbance with immunity and inflammatory
biology. This area may also have an impact in future to reduce the risk of
infectious disease, cardiovascular disease and cancer (7).

Psychotherapy is already part of care of cancer patients. Its scientific basis
rests on the psycho-neuro-immunological network.

J. PROMISING FUTURE DIRECTIONS

The approval by the FDA in recent years of targeted therapies with small
molecule inhibitors and with monoclonal antibodies indicates that we are in a
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process in which things relating to cancer therapy are moving. Nevertheless,
biological cancer therapies are not yet part of standard therapies.

Chapter VIl described potential new targets of cancer therapy. Targeting of
the tumor’s stromal network was suggested as a good concept. In the
meantime, we know that cancers depend on a support system. Interruption
of this support pathway may be as efficient as targeting the cancer cells
themselves. This view represents a change of paradigm in comparison to
standard therapy.

Of course, the tumor itself needs to be targeted as well, in particular the
cancer stem cells. Standard therapies target the cancer itself and try to
reduce the number of dividing cancer cells. Eventually, the cancer will not
only re-grow but it may have developed resistance mechanisms.

To overcome such resistancies, several strategies can be applied. Above we
mentioned already oncolytic viruses. Another strategy is to target epigenetic
mechanisms of cancer: DNA methylation, chromatin and nucleosome
positioning (8). Promoter DNA hypermethylation, a frequent phenomenon,
can cause disruption of gene function and facilitate development of cancer
resistancies. Inhibitors of DNA methyltransferases or of histone deacetylase
had effects at low doses in hematopoietic-related neoplasms (9). Many
agents targeting epigenetic regulation are under development and entering
clinical trials (8).

We predict that targeting epigenetic mechanisms in the cancer and
activating the immune system towards TAAs at the same time should be a
good concept. In our own experience from 1986 (more than 30 years ago !),
treatment of tumor cell immune escape variants (TAA loss variants) by 5-aza-
cytidine caused re-expression of the TAAs. So there is a rational basis for
combining epigenetics with immune activation (10).

The role of epigenetics in immune evasion has exposed a key role for
epigenetic modulators in augmenting the tumor microenvironment.
Epigenetic modulators allow to restore immune recognition and
immunogenicity (11). Recent studies suggest that epigenetic drugs prime the
immune response by increasing expression of TAAs and immune-related
genes (12).
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Our ability to predict what will be happening in the future with regard to
cancer treatment is, of course, limited. Science is a very innovative discipline
and many new developments may occur.

From my present point of view, | predict the following areas of research as
particularly promising : targeting Epigenetics, the Tumor microenvironment,
and the Immune system. These are three areas of research from which |
expect many new exciting results in the future.

This view is apparently shared by others (13,14).

Chapter IX

Key points

1. With regard to future directions of cancer therapy, it is important to
compare therapies to evaluate their advantages or disadvantages.

2. In this chapter we compare immunotherapies with other therapies.

3. Immunological tolerance is a sophisticated control system to avoid auto-
immune reactivity and to keep tissues and organs in a healthy state. This
might explain that immunotherapies have lower side effects than other
therapies.

4. Immunological memory is another characteristic of the adaptive immune
systems. It serves the purpose of obtaining long-term protection. This is of
great relevance for long-term overall survival. None of the other therapies
has a memory function.

5. In many cancer patients exists a cancer-reactive memory repertoire. This is
the result of spontaneous immune T-cell reactivity against the autologous
tumor. This memory repertoire is highly individual and polyspecific. If it can
be re-activated it should contribute considerably to the efficacy of treatment.
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6. New immune-related Response Evaluation Criteria in Solid Tumors
(irRECIST) and immune-related Response Criteria (irCR) are being
implemented in trials of immunotherapy.

7. Promising future directions of cancer research and treatment are
Epigenetics, Tumor microenvironment and Immune system activation. From a
combination of these targets we expect in future new exciting results.
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CHAPTER X. AUTOBIOGRAPHY NOTES

AND SCIENTIFIC OEVRE

A. AUTOBIOGRAPHY BOXES

BOX 1
Auto-Biography 1 1962 Biochemistry
Diploma study of Biochemistry in Tiibingen

In 1962, the University of Tiibingen was the first in Germany to inaugurate
in the Faculty of Natural Sciences a Diploma study of Biochemistry. Until this
time, this discipline had been designated as “Physiological Chemistry” and
belonged to the Medical Faculty.

In this year, | had started to study Chemistry and Biology at the University
of Hamburg, closest to my home town Wentorf, south-east of Hamburg. As
soon as | became aware of the existence of a Biochemistry Study in Tiibingen,
I asked several Professors of chemistry from Hamburg about their opinion.
Their answers were rather negative and biased. So | decided not to follow
their advice. Being convinced that this was the right thing for me, | took the
train to Tiibingen and tried to register at the University for this discipline.

It was a big surprise for the Professor of anorganic chemistry when he met
me. He told me that there existed a “numerus clausus” and all slots had been
given away already to the best students. But | did not give up. Eventually, |
could convince him to take an oral examination next morning. After a two-
hours test he was convinced of my qualification, agreed that | could study
biochemistry and even offered me a place in his practical training course. So
this was a good start of my career.

300



BOX 2
Auto-Biography 2 1969 Immunology
PhD thesis at Cologne, Germany, supervised by Prof Klaus Rajewsky

I had finished my study of biochemistry with a diploma thesis work on
competitive inhibition of the enzyme phosphoribosyl-transferase by
imidazole derivatives. Next | had to decide about an interesting Institution
where to perform the PhD thesis work. One option was to work at the Max-
Planck Institute in Freiburg (Germany) on a topic of immunochemistry,
namely to analyze the complement factor C'9, which catalyzes the production
of membrane pores in the process of antibody and complement-mediated
cell lysis.

An alternative was in Cologne the University Institute of Genetics, where
Prof K Rajewsky was just building up a new Division of Inmunology. The topic
was to study the interaction of carrier protein-specific T cells with hapten-
specific B cells in the secondary anti-hapten antibody response. | decided for
Cologne because this topic was at the for-front of modern immunology. In
retrospective, | do not regret this decision in favor of cellular immunology.
The seminars in this Division were lively and arguments had to be put
forward or against a certain hypothesis. This was excellent basic education in
science.

BOX 3
Auto-Biography 3 1972 Cellular Cytotoxicity
Post-doc at the Karolinska Institute, Stockholm, Sweden

With the help of a stipend from the Deutsche Forschungsgemeinschaft
(DFG), | spent my Post-Doctoral research period at the Department of Tumor
Biology under the supervision of the young Prof Hans Wigzell. He had
impressed me at my first International Congress in Finland where | presented
my results from the PhD thesis in Cologne.

He had developed an anti-immunoglobulin (Ig) column to separate T
lymphocytes (T cells) from B lymphocytes (B cells). It was the time of the
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“elusive” nature of the T cell receptor (TCR) for antigen and many
laboratories worldwide competed for solving this important question. In
contrast to the B cell receptor (BCR) for antigen which was made up of Ig, T
cells expressed a receptor which was not Ig. While it was known that B cells
recognize three-dimensional epitopes of a protein, we and others had found
that T cells were able to recognize denatured protein epitopes.

Together with my post-doc colleagues, the french P Golstein (who later
discovered the famous CTLA-4 regulatory receptor) and the danish B Rubin,
we designed experiments to study antigen-specific cytotoxic T lymphocytes
(CTL) in order to find out more about the nature of their TCR. Mice were
immunized with hapten-coupled albumin and their immune spleen cells re-
stimulated with the same antigen in culture for several days. Thereafter the
re-activated immune cells were tested for CTL activity by exposing them to

51cr-labeled hapten-coupled erythrocytes for 4 hours and testing their

release of radioactive >1Cr. In this way we indeed discovered hapten-specific
cell lysis. It soon turned out, however, that it were not T cells which killed
because they could not be inhibited by anti-T cell antibody.

So the chase began after the type of killer cell: The title of the publication
was “Chasing the killer cell “. It revealed an antibody-dependent cell-
mediated cytotoxicity (ADCC) mechanism. In this, immune B-cells produce
anti-hapten IgG antibody which binds to the target cells and natural killer
(NK) cells recognize the Fc portion of I1gG thereby becoming activated towards
cytotoxic activity. Neither NK cells, nor the ADCC mechanism had been known
at this time. It were exiting times even though we had missed our goal of
dealing with the TCR of CTLs.

Later it became clear why we failed. The choice of erythrocytes as target
cells was wrong. They do not express MHC molecules which T cells need to
recognize antigen, but this was not known yet.

PS: In 1972, | had the chance to attend the Nobel Prize Ceremony for G
Edelman and RR Porter at the “Stadhuset” in Stockholm. Together they had
resolved the structure of an IgG immunoglobulin antibody molecule. While
the american scientist G Edelman was very self-confident and presented
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himself as super-hero of modern immunology, the british RR Porter did the
opposite with typical british humor and understatement.

BOX 4
Auto-Biography 4 1973 Immunogenetic Research in London,
Senior Research Fellow at the London Hospital Medical College, London (UK)

The time in Sweden had been fruitful not only with regard to my scientific
experience but also with regard to my family life. In 1969 | had married
Barbara (birth name Ziemssen). Now in Sweden, two Schirrmacher girls were
born: Tanja in 1971 and Elise in 1973. They were both healthy and sweet.

When the time of the Stipend from the DFG was over, H Wigzell
recommended me to join Prof H Festenstein's group in London in order to get
more experience in immunogenetics. Hilliard Festenstein was one of the few
researchers who were capable of in vitro culture immune cells from mouse
and man. He had discovered an important minor histocompatibility locus in
mice coding for the minor lymphocyte stimulating antigen (Mls). A mixed
lymphocyte-culture (MLC) stimulation reaction was observed when co-
culturing spleen cells of two strains of mice with the same MHC, for instance
cells from DBA/2 mice (H-29, Mis?) with those of strain B10.D2 (H-29, MIs®).
Much later it was discovered that Mls antigens were identical with viral
superantigens (VSAG), in this case relicts in the DNA of mouse mammary
tumor viruses (MMTV). DBA/2 mice exert a central tolerance reaction in their
thymus against endogenous self antigen Mis? by deleting reactive T cells
expressing a vB6 TCR chain. This is not the case with B10.D2 mice because
these express endogenous Mis®. About 1:10 of B10.D2 T cells express a vR6
TCR chain. This frequency of SAG-reactive T cells is much higher than the
frequency of T cells against a conventional pMHC antigen, like a TAA or a viral
antigen (1: 10 000 to 1: 100 000).

In my later tumor immunological research at DKFZ, Heidelberg, this
immunogenetic knowledge played an important role. It enabled breaking T
cell tolerance and it helped to establish an adoptive cellular immunotherapy
effective even in late-stage metastatic disease.
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BOX 5
Auto-Biography 5 1973 MHC restriction of CTL
British Society of Inmunology Meeting in Brighton

A milestone for me was in 1973 the discovery by Rolf Zinkernagel and Peter
Doherty of the MHC restriction of CTLs. They had studied the specificity of
CTLs from mice infected by a murine cytomegalovirus virus (MCMV). What
was surprising was that the CTLs, in order to be able to kill an infected target
cell line, had to recognize not only a distinct viral antigen but also the MHC
type of the mouse strain, in which the CTLs were generated. Today we know
that CTLs recognize small peptides from target antigens (from viruses or
tumor cells) as complexes associated with the CTL host cells" MHC molecules.

| was chairing at the annual British Society for Immunology (BSI) Congress
in Brighton a Session on “Cellular Inmunology”. From the Abstracts that had
been sent in, | had selected the best ones for oral presentation within the 2
hours Session. At the last minute before the start, a then unknown Rolf
Zinkernagel approached me and showed me his abstract of his latest findings.
In recognizing the importance of these new findings, | agreed immediately to
an oral presentation. In 1996 R Zinkernagel and P Doherty received the Nobel
Prize for their important discovery.

BOX 6
Auto-Biography 6 1976 Start in Heidelberg, Germany
Head of Division Cellular Immunology

In 1976, | was appointed as Head of the Division “Cellular Immunology” at
the German Cancer Research Center (DKFZ) in Heidelberg, Germany. This
National Institution had been founded by the surgeon Prof KH Bauer. With
33 years, | was rather young to become a “Wissenschaftlicher Rat und
Professor” in Germany.
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The Institute of Immunology was the last of 9 Institutes which, together,
represented the Science at DKFZ. The Institution DKFZ is funded to 90% by the
State of Germany and to 10% by the Land Baden-Wiirttemberg. Together
with my colleagues K Eichmann and W Drége, who were appointed as Heads
of two other Immunology Divisions, our task was to build up a new Institute
at the 7 floor of the DKFZ building. Later, PH Krammer joined the Division of
K Eichmann and G Hdmmerling was appointed as Head of the fourth Division.
When K Eichmann became Director of a Max Planck Institute in Freiburg, PH
Krammer succeeded as Head of the respective Division.

It was the time of the Social-Liberal Government of Willy Brandt and Walter
Scheel, who encouraged for daring more democracy. So, our new Institute
(07) became the first at DKFZ not being directed by one chairman. We, the
Heads of the Divisions, together with DKFZ administration at the time,
decided to introduce a rotating Directorship. Since all Heads of the Divisions
had studied abroad, we agreed that the management stile of the New
Institute should be different from previous ones, more informal and
colleagual.

We are still proud of the following established traditions which supported a
corporate identity for our Institute. It was based on competition between the
four Divisions with regard to the following: to organize

i) Unusual Christmas parties with unique creativity in winter,
ii) Immuno-Moonshine Sessions on major topics of immunology,
iii) Immuno-Retreats for all scientists, and

iv) Immuno-Soccer-Cups in summer.

BOX 7
Auto-Biography 7 1980 Chamber music in Paris

Immunologists performing chamber music at the Opening Ceremony of the
4 International Congress of Immunology (ICl) in Paris.
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1980: Over 6000 immunologists attended the opening ceremony at the
Congress Center in Paris. The Congress was organized by the Nobel Laureat
Jean Dausset and the French Society of Immunology (SFI). My french
colleague Herve (Wolf) Fridman had known that | had the hobby of playing
the travers flute and that the Belgian immunologist Kees Melief similarly
enjoyed playing chamber music with the cello. So he asked us, about three
months before the event, whether we might like to play some chamber music
at this occasion. We had agreed under the assumption that chamber music
would be performed in a small chamber as a side program. To our surprise,
however, we were informed just one week before the Congress the
Organizing Committee had decided that we should perform in the middle of
the official Opening ceremony in the main Hall in front of 6000 people.

We only had time for rehearsal one day before the event. The other
musicians were professionals: Spedding Micklem (piano), Antonio Nunez
(first violin), Marian Nienhuis (second violin) and Dieter Leicht (first
violoncello). We played Wolfgang Amadeus Mozarts Flute Quartett in D
major, Robert Schumanns Piano Quintett and Franz Schuberts String Quintett.
I did not have much contact before the event with the organizers, nor with
the other musicians. | drove my car from Heidelberg to Paris, where | stayed
with friends.

Kees Melief sent me in august 2015 a digitalized soundtrack of our
performance from 35 years before. In his accompanying letter he memorized
the following: “ It was a memorable congress, if only because servants in
uniform with white gloves served all participants real champagne with very
tasty French appetizers in the “Palais du Luxembourg”. To have such long
stretches of classical music as evident from the soundtrack was another
unique aspect of the congress. This may have happened at the behest of Jean
Dausset, but was in practice made possible by the herculean efforts of Herve
Fridman and his colleagues. | remember taking the train with my fellow
musician Marian Nienhuis. At that time in the first class train compartment it
was possible to have a five course luxurious dinner in a restaurant on the
second floor of the train with panoramic views left and right and plenty of
time before arriving at the “Gare du Nord”. A nostalgia is elicited by this
recording, which is not optimal, but one can hear that the musicianship is in
many ways excellent and brings back the joy of these moments.”
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BOX 8
Auto-Biography 8 1982 Heparanase
German-Israel Cooperation Project

International collaboration is an important aspect in science. In 1982, |
received a grant from the German-Israel Cooperative Initiative and invited Dr
Israel Vlodavsky from Jerusalem to study in Heidelberg the interaction of our
Eb/ESb tumor cell variants with his culture system of blood vessel endothelial
cell monolayers and their subendothelial extra-cellular matrix (ECM). Thus,
technologies from cell biology were combined with those from tumor biology.
It became a very fruitful cooperation for both sides and the reciprocal
sympathy turned into a long-lasting friendship.

Only the metastatic variant ESb and not its parental line Eb was capable to
penetrate the blood vessel endothelial monolayer. Only ESb cells were also
capable to degrade the subendothelial ECM. This degradation involved a
lymphoma derived protease as well as a new enzymatic activity, which
caused the removal and degradation of heparan-sulfate side-chains from
ECM-derived heparan-sulfate-proteoglycans (HSPGs). This enzyme,
heparanase (Hpa), could eventually be identified. In contrast to other ECM-
degrading enzymes, it was later discovered that there was only a single gene
in the human genome coding for this enzyme. Inhibitors of Hpa had the
potential to inhibit angiogenesis. Much of Vlodavskys later work was devoted
to identifying such inhibitors.

As immunologists, we in Heidelberg became interested to find out whether
Hpa might become a new target for T-cell mediated immunotherapy. From
respective algorithms for searching peptides fitting into HLA-A2 molecules,
we derived hundreds of peptides from Hpa. The ones with the best HLA-A2
affinity were synthesized and tested in a memory-type ELISPOT assay with
bone-marrow derived T cells from breast cancer patients. Many such patients
had in their BM a repertoire of specificities highly enriched for Hpa peptides.
Their frequency turned out to be higher than specificities for other TAAs,
possibly due to the fact that the product of Hpa activity was activating DC
activity (PMID: 16885374).
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We wrote and handed in a patent application for the use of Hpa-derived
peptides for the use in future cancer vaccines. The patent became granted,
but the DKFZ patent specialists could not find any pharmaceutical company to
be interested in it. So the idea could not mature and the patent was not
followed any further.

BOX9
Auto-Biography 9 1982 — 1988 Honorable Prizes
Aronson Prize (82), Meyenburg Prize (82), German Cancer Award (88)

1982 was a year in which | received two awards: The Aronson Prize, given by
the town of Berlin, and the Meyenburg Prize, given by the Meyenburg
Foundation Hamburg via the DKFZ in Heidelberg. The latter Prize was handed
over to me by the then new Director, Prof H zur Hausen. The prizes
acknowledged our systematic research in animal models on cancer metastasis
and in basics of cellular immunology.

In 1988 | received the “German Cancer Award” for our experimental work on
post-operative active-specific immunotherapy (ASI) of cancer metastasis. It
had been successful because we had used a bird virus, Newcastle Disease
Virus (NDV) to infect autologous tumor cells to create a live cell anti-tumor
vaccine.

The concept of ASI had been studied in the USA by W Cassel from Atlanta in
the 1960s and 1970s and by M Hanna Jr in the 1980s and 1990s. Nevertheless,
it had never been heard of in Germany in the 1980s in circles of medical
oncologists.

| was convinced that pioneers were needed to develop entirely new
concepts of cancer treatment which were highly specific and had only low
side effects. However, some clinicians were afraid of “invadors” of their
territory. Unfortunately, in my conviction for ASI and in spite of the German
Cancer Award, | was not backed-up by Prof zur Hausen, the Head of the
Cancer Research Center and the later Nobel laureate.
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BOX 10
Auto-Biography 10 1988 Surgeons and immunotherapy
1988 compared to 1978

1978: | was invited by the surgeon Prof Grundman to Miinster (Germany) to
give a talk about cancer metastasis. The audience were all surgeons. At the
end, during the discussion, | was asked by one of them about my opininon
about a new type of therapy, called immunotherapy. Obviously he had not
known that this was my own field of research. | asked back, whether anybody
in the auditorium had heard about the american surgeon Steve Rosenberg
from the National Cancer Institute (NCI) in Washington. Nobody had heard
about him. So | explained how this surgeon was pioneering the field of
immunotherapy by treating patients with lymphokine-activated killer (LAK)
cells. | further mentioned that the aim was a kind of systemic immune cell
therapy.

The surgeons looked at me as if | had been ET coming from another planet
talking in a foreign language. In the break, thereafter, none of the surgeons
had any further question about this Steve Rosenberg. While turning their
backs to me, they rather preferred to talk among themselves about their
careers.

1988: The attitude of surgeons towards immunotherapy seemed to have
changed somewhat. | was able to cooperate with the surgeon Prof Peter
Schlag, who had just received a Professorship for Surgical Oncology at the
University Hospital in Heidelberg. He aggreed to perform a joint clinical
feasibility study in colorectal cancer patients of post-operative
immunotherapy with a virus (NDV)-modified autologous tumor cell vaccine.

It was also the year, in which | was invited to give a talk about
immunotherapy at the annual conference of the German Surgical Society,
chaired by Prof C Herfarth from Heidelberg.

BOX 11

Auto-Biography 11 1990 — 2008 Clinical studies
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From 1990 onwards we entered into clinical trials of post-operative
immunotherapy via anti-cancer vaccination with the autologous vaccine ATV-
NDV. Studies in primary operated breast cancer patients were performed,
without funding, under the Directorship of Prof G Bastert of the Heidelberg
University Clinic of Gynaecology in cooperation with my former student Dr T
Ahlert. Studies in primary operated colorectal cancer (CRC) patients were
performed, without funding, in cooperation with Dr D Ockert from the
University Clinic of Surgery in Mannheim. Studies in CRC patients of stage IV
with operable liver metastases were performed, with funding, in
collaboration with Prof P Schlag from the University Clinic of Surgery in
Heidelberg.

| am very grateful to the many engaged clinicians who were interested and
capable to perform such innovative studies. These required an enormous
amount of conviction, good will and new logistics. Nowadays, such
innovations need much more control, money and personel.

Most immunotherapy studies worldwide up to this time had been done in
melanoma patients, because melanoma was considered an immunogenic and
immune-responsive type of tumor. In 1990, we had applied for financial
support for studies of active-specific immunotherapy (ASI) in 5 different
types of human cancer. 4 of the 5 grant applications were turned down by
the reviewers, all clinicians practicing chemotherapy. After heavy disputes,
only one of the tumor entities was recommended for funding, namely
colorectal carcinoma (CRC). If we were to succeed in this important tumor, so
was the official argument of the clinical reviewers, then the concept would be
considered likely to work also in other carcinomas. Most of the clinicians
were convinced that we would fail because this tumor was considered inert
to immunotherapy.

For nearly 15 years, | was the driving force for testing new immunotherapy
strategies in cancer patients, while Prof zur Hausen, the Scientific Director of
DKFZ (for 4x5 = 20 years), decided from the beginning to function mainly as
retarding element. As virologist he was aiming at prophylactic viral vaccines
against virus-associated cancers and could not imagine that the immune
system was capable of recognizing and reacting against TAAs which had
nothing to do with viruses. So there was a lot of struggeling and arguing.
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One can imagine therefore why only very few applications for financial
support of ASI studies were granted. This explains among others why it all
took so long.

When the institutional pressure against my engagement for clinical studies
continued to rise in the years 1990 to 1995, | contacted worldwide many
experts in the field to ask for their advice. Was the present time right for
performing translational work on immunotherapy or not ? Was it ethical and
justified ?

| received many letters of support. Some colleagues became worried and
wondered whether, with regard to ASI, | was being “harassed by the
Inquisition” (letter from Prof JJ Oppenheim, National Cancer Institute, USA,
22.12.1994). Prof JV Nossal (Sir GUSTAV NOSSAL), Director of the WALTER
AND ELIZA HALL Institute of Medical Research, Melbourne, Australia , wrote
to me 22.05.1995, “the chief result of our review of your work in 1991
resulted in the suggestion to get a small advisory group which could help you
in the design of clinical trials and in their eventual evalution”.

Some experts suggested to me to look for another place for my studies.

In spite of the long-lasting pressure, | did not give up. For the following
reasons:

i) 1 was convinced that | was on the right path and doing research at the right
Institution,

ii) 1 thought of the many cancer patients that were suffering and deserved
better treatments as soon as possible,

iii) with regard to ethics, my position was: when you have a new treatment
with a scientific rationale, with positive pre-clinical results and with low side
effects, it would be un-ethical not to offer it to cancer patients suffering now,

iv) not knowing about the outcome from ASI studies, | tried to keep the risk
of failure to myself. | did not force any of my research assistants to engage in
this type of applied research.

An External Evalution of the ASI-Project, Division “Cellular Immunology”,
Deutsches Krebsforschungszentrum, took place March 27, 1995. Peer
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reviewers were Prof JO Armitage (Omaha, USA), Prof HF Oettgen (New York,
USA), Prof RA Reisfeld (La Jolla, USA), Prof HK Selbmann (Tiibingen, Germany)
and Prof RM Zinkernagel (Ziirich, Switzerland). The Expert Report , submitted
April 5, 1995, answered 4 of the 5 questions as good as they could and
commented the fifth one: “Do you have specific recommendations ?” as
follows: “The committee feels that DKFZ should make an effort to enlist the
collaboration of capable senior principal investigators who have undisputed
control of eligible patient populations in their institutions. This should not be
left to Prof Schirrmacher. The perceived lack of institutional support in this
regard has in fact been a major source of frustration for him.”

The results of most of our clinical ASI studies were positive, even though

they were of only Phase I/Il type and not randomized. Prof zur Hausen
maintained that he could be convinced only by positive results from
randomized-controlled prospective studies.

In 2008, we published the results from such a randomized-controlled
prospective study. It had been performed in stage IV colon cancer patients. In
the ASI arm there was a significantly improved 10-year survival. When |
presented these new results in the context of the last Peer-Reviewing of my
Division, no time was allowed for discussion. Also, afterwards, there was no
feedback from within the DKFZ. Nobody wanted to take any notice nor
discuss the truth, so “political” had the topic “ASI” already been made during
the years 1990 - 2008. It was an atmosphere, as if people were afraid of
hearing the truth. The dogma prevailed over the truth.

For me, however, the results were re-assuring. We had seen similar
improvements in OS ( as large as 30% ! ) in most of our previous Phase Il
clinical studies. So, apparently, there had not been a bias in the previous
study protocols.

Many years after his retirement, Prof zur Hausen admitted, in public, that
now he was convinced of the value of immunotherapy. This was easy to say
after having received to Nobel Prize. Based on suggestions by others, he
eventually awarded prizes for checkpoint inhibitory antibodies and for CAR-T
cells.

I do not want to judge.
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My achievements were meant to serve the cancer patient. | am aware that
the achievements were not possible without the discoveries of my scientific
ancestors in this particular research area. They also would not have been
possible  without the engaged work of my co-investors and clinical
cooperation partners.

BOX 12
Auto-Biography 12 2006 GBM immunotherapy
An innovative case of multimodal treatment of Glioblastoma multiforme.

In 2006, | was approached by a Physician who came from New York to
Heidelberg to ask for my help with regard to post-operative immunological
treatment of a rich business man who had been diagnosed at the age of 50
with GBM. After successful operation in his home country Belgium, the only
additional option of treatment that was offered was radio- and
chemotherapy (temodal). Since our GBM vaccination study with ATV-NDV
had already been closed, there was no possibility to offer participation in a
clinical study. Also, since the patient had already been operated, no
autologous viable tumor material was available for preparation of an
autologous virus-modified vaccine. The physician had already organized a
consortium of specialists concerning surgery (Brussels, Belgium),
chemotherapy (MD Anderson, Houston, Texas, USA) and systemic oncolytic
NDV virus therapy (Hebrew University, Jerusalem, Israel).

I was asked to design an individual protocol for immunotherapy which I did.
The responsibility for this was by the Head of Neurosurgery of the University
Clinic Heidelberg. His doctors cooperated in the vaccine preparation and
application. Dr Herold-Mende from the Neurosurgery Department had a
collection of about 30 self-established GBM cell lines. Out of these we
selected 4 lines which closely matched with the tumor of the patient. Next we
negotiated with the other specialists to obtain a two-week window per
months for the immunotherapy treatment. We insisted that there should not
be any interference by the other treatment modalities.
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The immunotherapy consisted of

i) priming with a DC vaccine pulsed with NDV oncolysate of two selected
GBM cell lines and

ii) boosting one week later with a live NDV-modified tumor cell vaccine
consisting of the two other selected cell lines.

The immune response was followed by immune monitoring via ELISPOT
using DCs loaded with either autologous tumor lysate, lysate from the
defined cell lines or with defined TAAs. Before the immunotherapy, the
patient’s T cells did not react against his own tumor. Six months after
vaccination, however, we had established such an autologous anti-tumor
immune response, in spite of the ongoing chemotherapy. The consortium met
every 3 to 6 months to further discuss the mode of treatment. This way the
patient was accompanied for as long as about 6 years. He eventually died in
the seventh year.

The patient has gained a number of years of life. We have learned a lot
about how to generate an immune response against an autologous tumor
with allogeneic tumor material and in combination with oncolytic
virustherapy and chemotherapy.

BOX 13
Auto-Biography 13 2008 Retirement Symposium and Farewell Party

2008 has been the year of my official retirement from DKFZ (Heidelberg) at
the age of 65. Having served the Cancer Research Center for more than 32
years, this event was celebrated by a Special Symposium. All speakers had
been members or guests of my Division of Cellular Immunology. The
Symposium and the Farewell Party afterwards took place at the “Palais Prinz
Carl” in the old town of Heidelberg.

Here follows the list of talks given at the Symposium at April 5, 2008.

1) Jim Dennis (Toronto, Canada): “Sweet memories of Heidelberg-
Glycosylation past and present”
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2) Achim Kriiger (Miinchen, Germany): “A Genetic Tag's Odyssey and Distant
Accomplices of Metastasis”

3) Mina Fogel (Rehovot, Israel): “L1-CAM: From Bench to bedside”

4) Georg Brunner (Miinster, Germany): “Gene expression analysis of
malignant melanoma”

5) Susanne Sebens (Kiel, Germany): “Interaction in tumorigenesis and cancer
research”

6) Hans-Jorg Schild (Mainz, Germany): “Regulation of adaptive immune
responses”

7) Kash Khazaie (Chicago, USA): “The dark side of immune response to
cancer”

8) Markus Feuerer (Boston, USA): “Thoughts on Peripheral Tolerance”

9) Manfred Lutz (Wiirzburg, Germany): “Peripheral Tolerance Induction by
Dendritic Cells”

10) Brigitte Giickel (Tiibingen, Germany): “Cell based vaccination strategies
for breast cancer”

11) Andreas Kaufmann (Berlin, Germany): “Prophylactic and therapeutic HPV
vaccines”

12) Klaus Bosslet (Berlin, Germany): “Recombinant oncolytic NDV virus:
Expression of a Prodrug activating enzyme and a therapeutic antibody”

A phantastic Farewell Party crowned this memorable event: Italian Food
served in the Art Deco “Spiegelsaal”, a selection of good wines, international
communication among old friends, exchange of gifts, music and dance until
midnight.
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B. SCIENTIFIC OEVRE (V Schirrmacher)

** This sign identifies publications of particular significance

MAJOR RESEARCH TOPICS

I TAND B CELL COOPERATION

- Rajewsky K, Schirrmacher V, Nase S, Jerne NK. The requirement of more
than one antigenic determinant for immunogenicity.
J Exp Med. 1969 Jun1;129(6):1131-43. PubMed PMID: 4181830; PubMed
Central PMCID: PM(C2138664.**

- Schirrmacher V, Rajewsky K. Determination of antibody class in a system of
cooperating antigenic determinants.
J Exp Med. 1970 Nov;132(5):1019-34. PubMed PMID: 4097133; PubMed
Central PMCID: PMC2138871.

- Schirrmacher V, Wigzell H. Imnmune responses against native and chemically
modified albumins in mice. I. Analysis of non-thymus-processed (B) and
thymus-processed (T) cell responses against methylated bovine serum
albumin. J Exp Med. 1972 Dec 1;136(6):1616-30. PubMed PMID: 4118415;
PubMed Central PMCID: PMC2139315.

- Schirrmacher V, Wigzell H. Imnmune responses against native and chemically
modified albumins in mice. Il. Effect of electric charge and conformation on
the humoral antibody response and on helper T cell responses. J Immunol.
1974 Nov;113(5):1635-43. PubMed PMID: 4138630.
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- Rubin B, Schirrmacher V, Wigzell H. The immune response against hapten-
autologous protein conjugates in the mouse. Il. Carrier specificity in the
secondary anti-hapten response and evidence of the existence of specific
helper cells. Scand J Immunol. 1973;2(2):189-97. PubMed PMID: 4125563.

- Rubin B, Hiesche K, Schirrmacher V, Wigzell H. The immune response against
hapten-autologous protein conjugates in the mouse. IV. Thymus dependency
of the primary response to hapten-autologous albumin conjugates.
J Immunol. 1973 Aug;111(2):492-9. PubMed PMID: 4123980.

Il CYTOTOXIC IMMUNE CELLS

- Schirrmacher V, Golstein P. Cytotoxic immune cells with specificity for
defined soluble antigens. I. Assay with antigen-coated target cells.
Cell Immunol. 1973 Nov;9(2):198-210. PubMed PMID: 4127615.

- Golstein P, Schirrmacher V, Rubin B, Wigzell H. Cytotoxic immune cells with
specificity for defined soluble antigens. Il. Chasing the Kkilling cells.
Cell Immunol. 1973 Nov;9(2):211-25. PubMed PMID: 4127616.

- Schirrmacher V, Rubin B, Golstein P, Wigzell H, Andersson B. Cytotoxic
immune cells with specificity for defined soluble antigens. Ill. Separation from
helper cells and from antibody-forming cell precursors.
Transplant Proc. 1973 Dec;5(4):1447-50. PubMed PMID: 4544162.

- Schirrmacher V, Rubin B, Pross H, Wigzell H. Cytotoxic immune cells
withspecificity for defined soluble antigens. IV. Antibody as mediator of
specific cytotoxicity. J Exp Med. 1974 Jan 1;139(1):93-107. PubMed PMID:
4128450; PubMed Central PMCID: PMC2139513.**

- Schirrmacher V, Rubin B, Pross H. Cytotoxic immune cells with specificityfor
defined soluble antigens. V. Interaction of antibody with the cytotoxic
effector cells in immune or non-immune mouse spleen cells. J Immunol.
1974Jun;112(6):2219-26. PubMed PMID: 4856907.
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Il Fc RECEPTORS, la ANTIGENS, VIRAL SUPERANTIGENS (MLS)

- Schirrmacher V, Halloran P, David CS. Interactions of Fc receptors with
antibodies against la antigens and other cell surface components.
J Exp Med. 1975 May 1;141(5):1201-9. PubMed PMID: 1079233; PubMed
Central PMCID: PMC2189787.

- Schirrmacher V, Pefa-Martinez J, Festenstein H. Specific lymphocyte-
activating determinants expressed on mouse macrophages.
Nature. 1975 May 8;255(5504):155-6. PubMed PMID: 48201.**

- Schirrmacher V, Festenstein H. Interaction of Fc and C3 receptors of
lymphoid cells with antibodies against products of the major
histocompatibility complex: association of MHC products with complement
receptors. Transplant Rev. 1976;30:140-73. Review. PubMed PMID: 59971.

- Halloran P, Schirrmacher V. Fc receptors and la antigens. Immunol Commun.
1976;5(4):243-61. Review. PubMed PMID: 61166.

IV MHC ANTIGENS, VIRUSES, INTERFERON

- Helenius A, Morein B, Fries E, Simons K, Robinson P, Schirrmacher V,
Terhorst C, Strominger JL. Human (HLA-A and HLA-B) and murine (H-2K and H-
2D) histocompatibility antigens are cell surface receptors for Semliki Forest
virus. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3846-50. PubMed PMID:
278998; PubMed Central PMCID: PMC392884.

- Morein B, Helenius A, Simons K, Pettersson R, Kdaridinen L, Schirrmacher V.
Effective subunit vaccines against an enveloped animal virus. Nature. 1978
Dec 14;276(5689):715-8. PubMed PMID: 310517.

- Morein B, Barz D, Koszinowski U, Schirrmacher V. Integration of a virus
membrane protein into the lipid bilayer of target cells as a prerequisite for
immune cytolysis. Specific cytolysis after virosome-target cell fusion. J
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ExpMed. 1979 Dec 1;150(6):1383-98. PubMed PMID: 512589; PubMed Central
PMCID: PMC2185719.

- Robinson PJ, Hunsmann G, Schneider J, Schirrmacher V. Possible cell surface
receptor for Friend murine leukemia virus isolated with viral envelope
glycoprotein complexes. J Virol. 1980 Oct;36(1):291-4. PubMed PMID:
7441823; PubMed Central PMCID: PMC353640.

- Barz D, Bosslet K, Schirrmacher V. Metastatic tumor cell variants with
increased resistance to infection by Semliki Forest virus. J Immunol.
1981Sep;127(3):951-4. PubMed PMID: 6267134.

- Storch E, Kirchner H, Schirrmacher V. Prolongation of survival of mice
bearing the Eb and ESb lymphoma by treatment with interferon inducers
alone or in combination with Corynebacterium parvum. Cancer Immunol
Immunother. 1986;23(3):179-84. PubMed PMID: 2431778.

- Kirchner H, Zawatzky R, Schirrmacher V. Interferon production in the murine
mixed lymphocyte culture. I. Interferon production caused by differences in
the H-2 K and H-2 D region but not by differences in the | region or the M
locus. Eur J Immunol. 1979 Jan;9(1):97-9. PubMed PMID: 155529.

- Kirchner H, Zawatzky R, Engler H, Schirrmacher V, Becker H, von Wussow P.
Production of interferon in the murine mixed lymphocyte culture. Il
Interferon production is a T cell-dependent function, independent of
proliferation. Eur J Immunol. 1979 Oct;9(10):824-6. PubMed PMID: 160324.

- Kaido T, Maury C, Schirrmacher V, Gresser I. Successful immunotherapy of
the highly metastatic murine ESb lymphoma with sensitized CD8+ T cells and
IFN-alpha/beta. Int J Cancer. 1994 May 15;57(4):538-43. PubMed PMID:
8181857.

IV TUMOR METASTASIS AND CELL MEDIATED IMMUNITY

- Schirrmacher V, Shantz G, Clauer K, Komitowski D, Zimmermann HP,
Lohmann-Matthes ML. Tumor metastases and cell-mediated immunity in a
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model system in DBA/2 mice. I. Tumor invasiveness in vitro and metastasis
formation in vivo. Int J Cancer. 1979 Feb;23(2):233-44. PubMed PMID:
761943.**

- Schirrmacher V, Shantz G. Tumor metastases and cell-mediated immunity in
a model system in DBA/2 mice. Il. Characteristics of a metastasizing variant of
a chemically induced lymphoma. Adv Exp Med Biol. 1979;114:769-75.
PubMed PMID: 463668.

- Schirrmacher V, Bosslet K, Shantz G, Clauer K, Hiibsch D. Tumor metastases
and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic
differences between a metastasizing variant and the parental tumor line
revealed by cytotoxic T lymphocytes. Int J Cancer. 1979 Feb;23(2):245-52.
PubMed PMID: 8396

- Schirrmacher V. Tumor metastases and cell-mediated immunity in a
modelsystem in DBA/2 mice. V. Transfer of protective immunity with H-2
identical immune T cells from B10.D2 mice. Int J Cancer. 1979 Jul 15;24(1):80-
6. PubMed PMID: 314423.

- Bosslet K, Schirrmacher V, Shantz G. Tumor metastases and cell-mediated
immunity in a model system in DBA/2 mice. VI. Similar specificity patterns of
protective anti-tumor immunity in vivo and of cytolytic T cells in vitro. Int J
Cancer. 1979 Sep 15;24(3):303-13. PubMed PMID: 314938.

- Lohmann-Matthes ML, Schleich A, Shantz G, Schirrmacher V. Tumor
metastases and cell-mediated immunity in a model system in DBA/2 mice.
VII. Interaction of metastasizing and nonmetastasizing tumors with normal
tissue in vitro. J Natl Cancer Inst. 1980 Jun;64(6):1413-25. PubMed PMID:
6929378.

- Schirrmacher V, Jacobs W. Tumor metastases and cell-mediated immunity in
a model system in DBA/2 mice. VIII. Expression and shedding of Fc gamma
receptors on metastatic tumor cell variants. J Supramol Struct.
1979;11(1):105-11. PubMed PMID: 522481.

- Schirrmacher V, Bosslet K. Tumor metastases and cell-mediated immunity in
a model system in DBA/2 mice. X. Immunoselection of tumor variants
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differing in tumor antigen expression and metastatic capacity. Int J Cancer.
1980 Jun 15;25(6):781-8. PubMed PMID: 14768708.

V. IMMUNE ESCAPE FROM CTLs

- Bosslet K, Schirrmacher V. Escape of metastasizing clonal tumor cell variants
from tumor-specific cytolytic T lymphocytes. J Exp Med. 1981 Aug
1;154(2):557-62. PubMed PMID: 6167655; PubMed Central PMCID:
PMC2186423.**

- Schirrmacher V, Bosslet K. Clonal analysis of expression of tumor-associated
transplantation antigens and of metastatic capacity. Cancer Immunol
Immunother. 1982;13(1):62-8. PubMed PMID: 7159873.

- Schirrmacher V, Fogel M, Russmann E, Bosslet K, Altevogt P, Beck L.
Antigenic variation in cancer metastasis: immune escape versus immune
control. Cancer Metastasis Rev. 1982;1(3):241-74. PubMed PMID: 6985248.

- Altevogt P, von Hoegen P, Schirrmacher V. Immunoresistant metastatic
tumor variants can re-express their tumor antigen after treatment with DNA
methylation-inhibiting agents. Int J Cancer. 1986 Nov 15;38(5):707-11.
PubMed PMID: 3490445 **

VI HEPATOCYTE — TUMOR CELL INTERACTION AND ORGAN SPECIFICITY OF

METASTASIS

- Schirrmacher V, Cheingsong-Popov R, Arnheiter H. Hepatocyte-tumor cell
interaction in vitro. I. Conditions for rosette formation and inhibition by anti-
H-2 antibody. J Exp Med. 1980 Apr 1;151(4):984-9. PubMed PMID: 7373219;
PubMed Central PMCID: PM(C2185824.**

- Cheingsong-Popov R, Robinson P, Altevogt P, Schirrmacher V. A mouse
hepatocyte carbohydrate-specific receptor and its interaction with liver-
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metastasizing tumor cells. Int J Cancer. 1983 Sep 15;32(3):359-66. PubMed
PMID: 6885185.

- Springer GF, Cheingsong-Popov R, Schirrmacher V, Desai PR, Tegtmeyer H.
Proposed molecular basis of murine tumor cell-hepatocyte interaction. J Biol
Chem. 1983 May 10;258(9):5702-6. PubMed PMID: 6304095.

- Benke R, Schirrmacher V. Change in organotropism of mouse lymphoma
variants associated with selective chemotactic responsiveness to organ-
derived chemoattractants. Clin Exp Metastasis. 1991 May-Jun;9(3):205-19.
PubMed PMID: 2060181.

- Wang JM, Chertov O, Proost P, Li JJ, Menton P, Xu L, Sozzani S, Mantovani A,
Gong W, Schirrmacher V, Van Damme J, Oppenheim JJ. Purification and
identification of chemokines potentially involved in kidney-specific
metastasis by a murine lymphoma variant: induction of migration and
NFkappaB activation. Int J Cancer. 1998 Mar 16;75(6):900-7. PubMed PMID:
9506536.

- Oppenheim JJ, Murphy WJ, Chertox O, Schirrmacher V, Wang JM. Prospects
for cytokine and chemokine biotherapy. Clin Cancer Res. 1997 Dec;3(12 Pt
2):2682-6. Review. PubMed PMID: 10068274.

VIl SHIFTS IN TUMOR CELL PHENOTYPES, THEORETICAL CONCEPTS OF

METASTASIS AND TREATMENT

- Schirrmacher V. Shifts in tumor cell phenotypes induced by signals from the
microenvironment. Relevance for the immunobiology of cancer metastasis.
Immunobiology. 1980 Jul;157(2):89-98. PubMed PMID: 6967852.**

- Larizza L, Schirrmacher V. Somatic cell fusion as a source of genetic
rearrangement leading to metastatic variants. Cancer Metastasis Rev.
1984;3(3):193-222. Review. PubMed PMID: 6388823.
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- Schirrmacher V. Cancer metastasis: experimental approaches, theoretical
concepts, and impacts for treatment strategies. Adv Cancer Res. 1985;43:1-
73. Review. PubMed PMID: 2581423.

- Umansky V, Schirrmacher V. Nitric oxide-induced apoptosis in tumor cells.
Adv Cancer Res. 2001;82:107-31. Review. PubMed PMID: 11447761.

- Fournier P, Schirrmacher V. Tumor antigen-dependent and tumor antigen-
independent activation of antitumor activity in T cells by a bispecific
antibody-modified tumor vaccine. Clin Dev Immunol. 2010;2010:423781. doi:
10.1155/2010/423781. Epub 2011 Mar 1. Review. PubMed PMID: 21403859;
PubMed Central PMCID: PMC3049336.**

- Schirrmacher V, Fournier P. Danger signals in tumor cells: a risk factor for
autoimmune disease? Expert Rev Vaccines. 2010 Apr;9(4):347-50. doi:
10.1586/erv.10.15. PubMed PMID: 20370543.

Vil IMMUNOGENETIC STUDIES ON TUMOR RESISTANCE

- Schirrmacher V. Immunogenetic studies on the resistance of mice to highly
metastatic DBA/2 tumor cell variants. I. Effect of incompatibilities at H-2 or
non-H-2 genes in normal and nude (nu/nu) mice. Invasion Metastasis.
1981;1(1):4-21. PubMed PMID: 7188381.

- Schirrmacher V, Landolfo S, Zawatzky R, Kirchner H. Immunogenetic studies
on the resistance of mice to highly metastatic DBA/2 tumor cell variants. II.
Influence of minor histocompatibility antigens on tumor resistance, gamma-
interferon induction and cytotoxic response.
Invasion Metastasis.1981;1(3):175-94. PubMed PMID: 6821364.

- Schirrmacher V, Griesbach A, Gehring M, Lehr B. Genetic separation of GvL
and GvH reactivity in new recombinant-inbred tumor-resistant mouse strains.
Int J Oncol. 1996 Jun;8(6):1035-43. PubMed PMID: 21544461.

- Schirrmacher V, Beutner U, Bucur M, Umansky V, Rocha M, von Hoegen P.
Loss of endogenous mouse mammary tumor virus superantigen increases
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tumor resistance. J Immunol. 1998 Jul 15;161(2):563-70. PubMed PMID:
9670928.

- Schirrmacher V, Miierkéster S, Bucur M, Umansky V, Rocha M. Breaking
tolerance to a tumor-associated viral superantigen as a basis for graft-versus-
leukemia reactivity. Int J Cancer. 2000 Sep 1;87(5):695-706. PubMed PMID:
10925364.**

IX CELL SURFACE LECTIN — CARBOHYDRATE INTERACTION

- Dennis J, Waller C, Timpl R, Schirrmacher V. Surface sialic acid reduces
attachment of metastatic tumour cells to collagen type IV and fibronectin.
Nature. 1982 Nov 18;300(5889):274-6. PubMed PMID: 7144883.**

- Fogel M, Altevogt P, Schirrmacher V. Metastatic potential severely altered
by changes in tumor cell adhesiveness and cell-surface sialylation. J Exp Med.
1983 Jan 1;157(1):371-6. PubMed PMID: 6848622; PubMed Central PMCID:
PMC2186915.%*

- Altevogt P, Fogel M, Cheingsong-Popov R, Dennis J, Robinson P,
Schirrmacher V. Different patterns of lectin binding and cell surface
sialylation detected on related high- and low-metastatic tumor lines. Cancer
Res. 1983 Nov;43(11):5138-44. PubMed PMID: 6616451.

- Dennis JW, Waller CA, Schirrmacher V. Identification of asparagine-linked
oligosaccharides involved in tumor cell adhesion to laminin and type IV
collagen. J Cell Biol. 1984 Oct;99(4 Pt 1):1416-23. PubMed PMID: 6237114;
PubMed Central PMCID: PMC2113307.

- Schwartz R, Schirrmacher V, Miihlradt PF. Glycoconjugates of murine tumor
lines with different metastatic capacities. I. Differences in fucose utilization
and in glycoprotein patterns. Int J Cancer. 1984 Apr 15;33(4):503-9. PubMed
PMID: 6706434.

- Schwartz-Albiez R, Steffen I, Lison A, Giittler N, Schirrmacher V, Keller R.
Expression and enhanced secretion of proteochondroitin sulphate in a
metastatic variant of a mouse lymphoma cell line. Br J Cancer. 1988
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Jun;57(6):569-75. PubMed PMID: 3408644; PubMed Central PMCID:
PMC2246466.

- Murayama K, Levery SB, Schirrmacher V, Hakomori S. Qualitative differences
in position of sialylation and surface expression of glycolipids between
murine lymphomas with low metastatic (Eb) and high metastatic (ESb)
potentials and isolation of a novel disialoganglioside (GD1 alpha) from Eb
cells. Cancer Res. 1986 Mar;46(3):1395-402. PubMed PMID: 3484680.

- Gabius HJ, Bandlow G, Schirrmacher V, Nagel GA, Vehmeyer K. Differential
expression of endogenous sugar-binding proteins (lectins) in murine tumor
model systems with metastatic capacity. Int J Cancer. 1987 May 15;39(5):643-
8. PubMed PMID: 3570557.

- Lang E, Kohl U, Schirrmacher V, Brossmer R, Altevogt P. Structural basis for
altered soybean agglutinin lectin binding between a murine metastatic
lymphoma and an adhesive low malignant variant. Exp Cell Res. 1987
Nov;173(1):232-43. PubMed PMID: 2445594.

- Lang E, Schirrmacher V, Altevogt P. Molecular identification of lectin binding
sites differentiating related low and high metastatic murine lymphomas. Clin
Exp Metastasis. 1988 Jan-Feb;6(1):61-72. PubMed PMID: 3335081.

- Benke R, Lang E, Komitowski D, Muto S, Schirrmacher V. Changes in tumor
cell adhesiveness affecting speed of dissemination and mode of metastatic
growth. Invasion Metastasis. 1988;8(3):159-76. PubMed PMID: 3259567.

- Beuth J, Ko HL, Schirrmacher V, Uhlenbruck G, Pulverer G. Inhibition of liver
tumor cell colonization in two animal tumor models by lectin blocking with D-
galactose or arabinogalactan. Clin Exp Metastasis. 1988 Mar-Apr;6(2):115-20.
PubMed PMID: 3345610.

- Matzku S, Kirchgessner H, Schirrmacher V. Antibody targeting to the murine
lymphoma ESb-MP: increased accumulation due to reduced internalization
into lymphoma cells as compared to normal lymphoid cells. Int J Cancer. 1988
Jan 15;41(1):108-14. PubMed PMID: 3335414.

- Lichtner RB, Wiedemuth M, Noeske-Jungblut C, Schirrmacher V. Rapid
effects of EGF on cytoskeletal structures and adhesive properties of highly
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metastatic rat mammary adenocarcinoma cells. Clin Exp Metastasis. 1993
Jan;11(1):113-25. PubMed PMID: 8422702.

- Khazaie K, Schirrmacher V, Lichtner RB. EGF receptor in neoplasia and
metastasis. Cancer Metastasis Rev. 1993 Sep;12(3-4):255-74. Review.
PubMed PMID: 8281612.

- Kaufmann AM, Lichtner RB, Schirrmacher V, Khazaie K. Induction of
apoptosis by EGF receptor in rat mammary adenocarcinoma cells coincides
with enhanced spontaneous tumour metastasis. Oncogene. 1996 Dec
5;13(11):2349-58. PubMed PMID: 8957076

X INVASION, HEPARANASE AND METASTATIC POTENTIAL

- Vlodavsky |, Schirrmacher V, Ariav Y, Fuks Z. Lymphoma cell interaction with
cultured vascular endothelial cells and with the subendothelial basal lamina:
attachment, invasion and morphological appearance. Invasion Metastasis.
1983;3(2):81-97. PubMed PMID: 6677623.

- Vlodavsky 1, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V. Lymphoma cell-
mediated degradation of sulfated proteoglycans in the subendothelial
extracellular matrix: relationship to tumor cell metastasis. Cancer Res. 1983
Jun;43(6):2704-11. PubMed PMID: 6601984.

- Bar-Ner M, Kramer MD, Schirrmacher V, Ishai-Michaeli R, Fuks Z, Vlodavsky
I. Sequential degradation of heparan sulfate in the subendothelial
extracellular matrix by highly metastatic lymphoma cells. Int J Cancer. 1985
Apr 15;35(4):483-91. PubMed PMID: 3157649.**

- Haimovitz-Friedman A, Falcone DJ, Eldor A, Schirrmacher V, Viodavsky |,
Fuks Z. Activation of platelet heparitinase by tumor cell-derived factors.
Blood. 1991 Aug 1;78(3):789-96. PubMed PMID: 1859891.

- Kramer MD, Robinson P, Vlodavsky I, Barz D, Friberger P, Fuks Z,
Schirrmacher V. Characterization of an extracellular matrix-degrading
protease derived from a highly metastatic tumor cell line. Eur J Cancer Clin
Oncol. 1985 Mar;21(3):307-16. PubMed PMID: 3891358.
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- Meissauer A, Kramer MD, Hofmann M, Erkell U, Jacob E, Schirrmacher V,
Brunner G. Urokinase-type and tissue-type plasminogen activators are
essential for in vitro invasion of human melanoma cells. Exp Cell Res. 1991
Feb;192(2):453-9. PubMed PMID: 1899072.

- Meissauer A, Kramer MD, Schirrmacher V, Brunner G. Generation of cell
surface-bound plasmin by cell-associated urokinase-type or secreted tissue-
type plasminogen activator: a key event in melanoma cell invasiveness in
vitro. Exp Cell Res. 1992 Apr;199(2):179-90. PubMed PMID: 1531956.

- Brunner G, Vettel U, Jobstmann S, Kramer MD, Schirrmacher V. A T-cell-
related proteinase expressed by T-lymphoma cells activates their endogenous
pro-urokinase. Blood. 1992 Apr 15;79(8):2099-106. PubMed PMID: 156

- Brunner G, Reimbold K, Meissauer A, Schirrmacher V, Erkell LJ. Sulfated
glycosaminoglycans enhance tumor cell invasion in vitro by stimulating
plasminogen activation. Exp Cell Res. 1998 Mar 15;239(2):301-10. PubMed
PMID: 9521847.

- Waller CA, Braun M, Schirrmacher V. Quantitative analysis of cancer
invasion in vitro: comparison of two new assays and of tumour sublines with
different metastatic capacity. Clin Exp Metastasis. 1986 Apr-Jun;4(2):73-89.
PubMed PMID: 3720058.

- Erkell LJ, Schirrmacher V. Quantitative in vitro assay for tumor cell invasion
through extracellular matrix or into protein gels. Cancer Res. 1988 Dec
1;48(23):6933-7. PubMed PMID: 3180101.

- Vollmers HP, Imhof BA, Braun S, Waller CA, Schirrmacher V, Birchmeier W.
Monoclonal antibodies which prevent experimental lung metastases.
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