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Abstract: Background: The prognosis of children with diffuse intrinsic pontine glioma (DIPG)
remains dismal despite radio- and chemotherapy or molecular-targeted therapy. Immunotherapy is a
powerful and promising approach for improving the overall survival (OS) of children with DIPG.
Methods: A retrospective analysis for feasibility, immune responsiveness, and OS was performed on
41 children treated in compassionate use with multimodal therapy consisting of Newcastle disease
virus, hyperthermia, and autologous dendritic cell vaccines as part of an individualized combinatorial
treatment approach for DIPG patients. Results: Patients were treated at diagnosis (n = 28) or at the
time of progression (n = 13). In the case of 16 patients, histone H3K27M mutation was confirmed by
analysis of biopsy (n = 9) or liquid biopsy (n = 9) specimens. PDL1 mRNA expression was detected
in circulating tumor cells of ten patients at diagnosis. Multimodal immunotherapy was feasible
as scheduled, until progression, in all patients without major toxicity. When immunotherapy was
part of primary treatment, median PFS and OS were 8.4 m and 14.4 m from the time of diagnosis,
respectively, with a 2-year OS of 10.7%. When immunotherapy was given at the time of progression,
median PFS and OS were 6.5 m and 9.1 m, respectively. A longer OS was associated with a Th1 shift
and rise in PanTum Detect test scores. Conclusions: Multimodal immunotherapy is feasible without
major toxicity, and warrants further investigation as part of a combinatorial treatment approach for
children diagnosed with DIPG.

Keywords: DIPG; multimodal immunotherapy; DC vaccination; Newcastle disease virus;
hyperthermia; PanTum Detect test; Th1 shift

1. Introduction

Diffuse intrinsic pontine glioma (DIPG) is a rare brainstem tumor that typically occurs in children.
The overall incidence rate of all primary brain tumors ranges between 3–6 per 100,000 children and
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adolescents between 0 and 19 years of age [1,2]. About 10–15% of these tumors are located in the brain
stem [2,3] and 75–80% of pediatric brainstem tumors are DIPG [3], making its incidence less than one
per 100,000 children each year. DIPG is diagnosed by assessment of clinical symptoms derived from
the pyramidal tract, the cerebellum, and the cranial nerves, together with the typical imaging on MRI,
which manifests as a T1-weighted hypointensity,T2-weighted hyperintensity involving >50% of the
pons, with occasional ring contrast enhancement [4]. Most, but not all, of these lesions are driven by
histone mutations [5], classifying them as diffuse midline gliomas (DMG), according to the current
WHO brain tumor classification [6]. About 85% of DIPGs harbor histone mutations [7].

There is no known cure for DIPG [7] and the 2-year overall survival (OS) remains below 10%.
Insufficient data in the literature preclude analysis of the 5-year OS of this disease [8]. The poor
prognosis of DIPG is in contrast to the more favorable prognosis of pediatric glioblastoma multiforme
(GBM), which results in a 5-year OS of about 20% in cases involving favorable clinical risk factors
(e.g., age, location, extent of resection) [9]. In contrast, DIPG is inoperable, and radiotherapy is
generally accepted as the standard-of-care treatment, reducing temporarily acute symptoms [10–13].
Changing radiotherapy modalities, or the addition of (neo)adjuvant chemotherapy or other drugs, has
not changed the OS over the past 30 years [14]. Re-irradiation is possible [15]. A breakthrough came
when biopsy was developed as a safe and feasible procedure [16,17]. Knowledge on the molecular
biology of the tumor has resulted in the development of molecular-driven treatment strategies [18,19].
The worldwide networks for biology data and the DIPG registry for clinical and radiological data
together form the basis for future development in the field [20,21]. Apart from radiotherapy as a single
treatment modality or clinical trials combining radiotherapy with classic chemotherapy [22], innovative
treatment modalities have emerged such as local treatments via convection-enhanced delivery [23–25].

Immunotherapy and biologic treatments for DIPG are emerging fields of research.
A Clinicaltrials.gov search (September 2019) for “DIPG/Immunotherapy” yielded six trials studying
the role of vaccines including two trials with dendritic cell (DC) vaccines (NCT03396575, phase 1,
recruiting; NCT02840123, phase 1, active, not recruiting), two trials focused on immunomodulation
with Indoximod (NCT04049669, phase 2, not yet recruiting; NCT02502708, phase 1, recruiting), one trial
with tumor-initiating-cells (NCT01400672, phase 1, suspended), and one with the H3.3K27M peptide
vaccine (NCT02960230, phase 1, active, not recruiting). One trial was registered using the oncolytic
virus Adenovirus DNX-2401 (NCT03178032, phase 1, recruiting). Each of these studies included a
limited number of patients, and focused on feasibility, toxicity, or preliminary efficacy. Treatments
typically included radiotherapy. Data from these trials would give important, but limited, information
on the research question.

In addition, individualized combination treatment strategies outside of clinical trials are a
well-known phenomenon, not only in the scientific community but also in patient communities.
Particularly for DIPG, treatment approaches outside of clinical trials are common [26]. It is of utmost
importance for both the scientific and patient community that the results from these individualized
treatment approaches are analyzed and reported. We therefore aimed to present the data of a
retrospective analysis of 41 children with DIPG consecutively treated with multimodal immunotherapy
in compassionate use at the Immun-Onkologisches Zentrum Köln (IOZK), between October 2011 and
February 2018.

2. Materials and Methods

The database consisting of all patients who had contact with the IOZK was fixed at 15 July
2018. A search for DIPG as the primary diagnosis yielded 142 records of patients from at least
33 countries (data not available for 16 patients). Forty-one of these patients (29%) were actively treated
with immunotherapy at the IOZK as an individualized treatment approach in compassionate use
(“individueller Heilversuch”) between October 2011 and February 2018. Thirty-six patients (88%)
began treatment between 2016–2017. The last OS analysis was performed at the end of September 2019.
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All patients started immunotherapy with a blood investigation focused on the functional status
of the immune system. The immunotherapy consisted of vaccination cycles and/or immunogenic
cell death (ICD) therapy. Full vaccination cycles consisted of five consecutive days of treatment
with intravenous injection of Newcastle disease virus (NDV) in combination with local modulated
electrohyperthermia (mEHT) via the Oncothermia EHY-2000 device (Oncotherm GmbH, Troisdorf,
Germany) for 40 min at an intensity of 40 W. During mEHT, 0.9% NaCl infusion was administered.
On the eighth day, a sixth session of NDV/mEHT was administered. Autologous mature DCs were
loaded with NDV/mEHT-induced serum-derived antigenic extracellular microvesicles and apoptotic
bodies. DCs were injected intradermally in the upper third of the arm. This personalized vaccine,
approved as an advanced therapy medicinal product since May 2015 and registered as IO-VAC®,
was prepared as described [27]. The therapy consisted of two consecutive vaccination cycles with an
interval of three weeks between each cycle. ICD therapy consisted of three days of NDV/mEHT. ICD
therapy was incorporated at days 8, 9, and 10 in conjunction with 5/28 days oral TMZ. Following the
maintenance chemotherapy, vaccination cycles were started following a similar schedule as described
for adults with GBM [27]. ICD therapy was also given as maintenance immunotherapy after two full
vaccination cycles for all patients who reached that stage.

Plasma circulating tumor DNA (ctDNA) analysis was used to screen for H3.3K27M mutation in
21 patients, as described previously [28,29]. Briefly, cell free DNA was isolated from 1 mL of plasma,
and digital droplet PCR (ddPCR) was performed as per [29] to detect, and quantify the abundance of
the H3F3A wildtype and K27M mutant alleles.

Patients were monitored during treatment at three levels. Routine cell numbers and immune
functional tests were determined in the clinical laboratory (www.synlab.com). The percentage of IL-4
and IFN-g expression within CD4+ T cells was determined using FACS. Circulating tumor cells (CTC)
were isolated and the mRNA expression level of PDL1 was analyzed by Biofocus (www.biofocus.de).
The PanTum Detect tests were performed at IOZK using the Epitope Detection In Monocyte (EDIM)
technology as described [30–33].

3. Results

3.1. Patient Characteristics

Forty-one children (n = 10 male, 31 female) from 16 countries were effectively treated with
multimodal immunotherapy at the IOZK, following an in-depth explanation of the treatment strategy
and written informed consent from the patient or patient’s guardian. Our retrospective analysis
focused on this group of patients. An additional 101 children with DIPG were registered in the
database, but did not follow treatment for various reasons. The treated children were subdivided into
three groups: Group 1, children receiving immunotherapy before radio- and chemotherapy (n = 6);
Group 2, children receiving immunotherapy in conjunction with the first line of treatment provided by
the local oncology center (n = 22 total; radiotherapy only = 13, radiotherapy and chemotherapy = 9);
and Group 3, children treated with immunotherapy upon disease progression following the first
line of standard treatment, which consisted of radiotherapy for all patients, and a combination of
radio/chemotherapy in the case of nine patients (n = 13 total). The median age at diagnosis for all
children was five years, with a range from two to 19 years (Figure 1A). The age range did not differ
between the three patient groups (Kruskal–Wallis test). The median Lansky Playing Scores (LPS) of the
three patients groups were 80, 90, and 60, respectively, indicating no significant difference between the
groups (Kruskal–Wallis test), although the minimum LPS were 70, 60, and 20, respectively (Figure 1B).

www.synlab.com
www.biofocus.de
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immunotherapy (Figure 2). Three different categories of tests were performed. (1) The number and 
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The relatively high proportion of patients falling below the lower reference limit reflects their first 
line of treatment with chemotherapy (administered to three patients in Group 1) and/or radiotherapy 
(administered to all patients in Group 2). The three children who did not receive chemotherapy or 
radiotherapy from Group 1 had also at least one variable below the reference limit for cytokine 
production. These children did not receive steroids. Patients from Group 3 were no more affected 
than patients from Groups 1 or 2. (2) A PanTum Detect test was performed in all children at diagnosis. 
The PanTum Detect test is a novel screening test based on two general markers in cancer, Apo10 and 
TKTL1, which can be detected with intracellular staining and FACS analysis in CD14+CD16+ gated 
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with abnormal apoptosis and proliferation. The transketolase-like protein 1 (TKTL1) represents the 
enzymatic basis for anaerobic glucose metabolism even in the presence of oxygen, which is 
concomitant with a more malignant phenotype due to invasive growth/metastasis and resistance to 
radical and apoptosis-inducing therapies. Interestingly, at least one PanTum Detect test score was in 
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Apo10 value with a normal value for TKTL1. (3) Although plasma for ctDNA analysis was not 
systematically sampled at diagnosis, circulating tumor cell (CTC) detection was performed in almost 
all children. The latter test isolates CTCs derived from brain tumors as these cells are larger than 
circulating blood cells, remain on top of a filter, and harbor oncogenic mRNA expression profiles 
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Figure 1. Characteristics of retrospective cohort consisting of 41 children with diffuse intrinsic
pontine glioma (DIPG). Patients included in this retrospective cohort were stratified into three groups
based on the treatment modalities they received in addition to immunotherapy. Patients in Group
1 received immunotherapy prior to radiation therapy, while patients in Group 2 received radiation
therapy before beginning immunotherapy as their first line of treatment. Patients in Group 3 received
immunotherapy at the time of progressive disease, following their first line of treatment. (A) Age
distribution (median and interquartile range). (B) Lansky score at admission for immunotherapy
(median and interquartile range).

All children received the diagnosis of DIPG based on MRI diagnostics in the local treating oncology
center and were counseled accordingly. A retrospective central radiology review was not organized.
Data on the length of symptoms prior to diagnosis were not systematically captured. Histone mutations
were molecularly confirmed by tissue biopsy in nine patients (19.5%) (n = 1/6 patients from Group
1, 5/22 from Group 2, and 3/13 from Group 3). ddPCR analysis of plasma ctDNA indicated that 9/21
patients tested were positive for H3.3K27M mutation [34,35]. Plasma ctDNA mutation detection was in
accordance with histone mutation status confirmed by tissue biopsy in 2/3 patients. Hence, molecular
support for the DIPG diagnosis was present in 16/41 patients (n = 1/6 patients from Group 1, 12/22
from Group 2, and 3/13 from Group 3).

An immune diagnostic procedure was performed on patients prior to the start of immunotherapy
(Figure 2). Three different categories of tests were performed. (1) The number and functions of T
cells, B cells, and NK cells were compared to the reference values of the laboratory. The relatively
high proportion of patients falling below the lower reference limit reflects their first line of treatment
with chemotherapy (administered to three patients in Group 1) and/or radiotherapy (administered to
all patients in Group 2). The three children who did not receive chemotherapy or radiotherapy from
Group 1 had also at least one variable below the reference limit for cytokine production. These children
did not receive steroids. Patients from Group 3 were no more affected than patients from Groups 1 or
2. (2) A PanTum Detect test was performed in all children at diagnosis. The PanTum Detect test is a
novel screening test based on two general markers in cancer, Apo10 and TKTL1, which can be detected
with intracellular staining and FACS analysis in CD14+CD16+ gated circulating monocytes using
EDIM technology [30–33]. The Apo10 protein epitope marks tumor cells with abnormal apoptosis and
proliferation. The transketolase-like protein 1 (TKTL1) represents the enzymatic basis for anaerobic
glucose metabolism even in the presence of oxygen, which is concomitant with a more malignant
phenotype due to invasive growth/metastasis and resistance to radical and apoptosis-inducing therapies.
Interestingly, at least one PanTum Detect test score was in the pathologic range in all patients. Only
four patients, all belonging to Group 2, had a borderline Apo10 value with a normal value for TKTL1.
(3) Although plasma for ctDNA analysis was not systematically sampled at diagnosis, circulating tumor
cell (CTC) detection was performed in almost all children. The latter test isolates CTCs derived from
brain tumors as these cells are larger than circulating blood cells, remain on top of a filter, and harbor
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oncogenic mRNA expression profiles (e.g., elevated expression of telomerase, ERBB2, C-kit, and EGFR,
relative to the expression of housekeeping genes). CTCs were detected in 2/5 patients from Group 1,
17/20 patients from Group 2, and 5/8 patients from Group 3. Increased PDL1 mRNA expression in
CTCs was detected in one, seven, and two patients from Groups 1 to 3, respectively. In five patients
with positive CTC detection, PDL1 mRNA expression was not elevated compared to the housekeeping
genes. In 3/9 patients tested, no CTCs were detected in the blood. In one biopsied patient from Group
3, no CTC data were available. Together, the immune function variables, the PanTum Detect test
variables, and the evidence of PDL1 mRNA expression in CTCs all indirectly provide information on
the tumor microenvironment including the interaction between the tumor and the host’s immune
system. The results of these tests can inform and refine personalized immunotherapy.
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Before the start of immunotherapy, three patients in Group 1 received chemotherapy prior to 
radiotherapy, according to the Polish standard of care. One of these patients received a complex 
cocktail of different repurposing and complementary drugs (Agomelatine, minocycline, valproic 
acid, curcumin, Boswelia, scorpion venum extract, CBD), and another patient received photodynamic 
treatment (PDT, www.webermedical.com). This latter child and one additional patient were further 
treated with PDT during immunotherapy. Patients in Group 2 were all treated with radiotherapy 
prior to immunotherapy. Nine patients also received chemotherapy, five of whom continued 

Figure 2. (A) Proportion of patients deviating from the normal reference values: White blood cell count,
hemoglobin, thrombocyte count; relative values for white blood cell subpopulations as percentage
(granulocytes, lymphocytes, monocytes, eosinophils, basophils); absolute values for lymphocyte
subpopulations (T cells, B cells, NK cells); percentage cytokine producing CD4+ T cells (IL-2; IL-4,
IFN-g) and cytotoxic NK cell function at three effector target ratios (E:T 1:1, 5:1, 10:1). (B) Proportion
of patients showing levels (normal, border, above the reference values) of Apo10 and TKTL1 within
the CD14+CD16+ monocytes. (C) Proportion of patients without (no CTC) or with CTCs, and with
negative (CTC PDL1-) or positive (CTC PDL1+) PDL1 mRNA expression.

3.2. Treatment Data

Before the start of immunotherapy, three patients in Group 1 received chemotherapy prior to
radiotherapy, according to the Polish standard of care. One of these patients received a complex
cocktail of different repurposing and complementary drugs (Agomelatine, minocycline, valproic acid,
curcumin, Boswelia, scorpion venum extract, CBD), and another patient received photodynamic
treatment (PDT, www.webermedical.com). This latter child and one additional patient were further
treated with PDT during immunotherapy. Patients in Group 2 were all treated with radiotherapy prior
to immunotherapy. Nine patients also received chemotherapy, five of whom continued Temozolomide

www.webermedical.com
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(TMZ) maintenance chemotherapy together with immunogenic cell death (ICD) treatment until the
first progression, after which full dendritic cell (DC) vaccination cycles were initiated. One patient was
treated respectively with CED treatment, oral panobinostat, gallium maltonate, and Bevacizumab as
part of the first line of treatment prior to immunotherapy. During immunotherapy, one patient was also
treated with CED, PDT, and gallium maltonate, respectively. As a result, 14/22 patients from Group
2 received multimodal immunotherapy following radiotherapy without any concomitant treatment
modality. Two of the 13 children in Group 3 combined multimodal immunotherapy with gallium
maltonate treatment. The use of complementary drugs or diet was not systematically reviewed.

The technical details of the multimodal immunotherapy are shown in Figure 3. ICD treatment
consisted of the combination of intravenous NDV administration together with mEHT. Each DC
vaccination cycle consisted of six NDV/mEHT treatments combined with intradermal injection of
autologous mature DCs loaded with NDV/mEHT-induced serum-derived antigenic extracellular
microvesicles and apoptotic bodies from the patient’s tumor. There was no significant difference in
the numbers of DCs, vaccinations, hyperthermia sessions, or NDV administrations between the three
groups of patients (Kruskal–Wallis test).
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Figure 3. (A) Number of sessions of modulated electrohyperthermia (mEHT); (B) number of injections
of Newcastle disease virus (NDV); (C) number of dendritic cell (DC) vaccines; and (D) number of DCs
injected for the three patient groups.

3.3. Clinical Evolution

All treatments were administered in an ambulatory setting. Twenty-four children received a
central venous access device placed prior to the start of immunotherapy, while 15 children received the
immunotherapy without central venous access. Two children received a central venous access during
immunotherapy. One child with fast progressive DIPG and LPS of 40 received a central venous access
device, aimed at providing general support including a short hospitalization. This patient discontinued
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immunotherapy after one week. Treatment-induced side effects were not systematically screened
using questionnaires. At each patient contact, clinical signs were discussed. Most symptomatology
was attributed to the DIPG itself and/or other antitumoral treatments given. Nevertheless, low grade
complaints of fever (n = 1), dizziness (n = 2), neuralgia (n = 1), and headache (n = 1), all likely related to
immunotherapy, and ascites in the context of a ventriculo-peritoneal drainage (n = 1) were registered
in the database.

MRI was performed at the local oncology center. Progressive disease can be difficult to discern in
the context of DIPG, and, reference radiology was not systematically performed in all patients, further
complicating the identification of disease progression. Moreover, the contribution of immunotherapy
made the interpretation of MRI findings more difficult. IOZK provided all information when requested
for the assessments at the local hospitals. For the analysis in this retrospective study, PFS was defined as
the moment when a new treatment strategy was implemented by the local oncology center. Data were
available for 22 patients from the 28 first-line DIPG patients belonging to Group 1 (immunotherapy
before radiotherapy) and Group 2 (immunotherapy after radiotherapy). The median PFS was 8.4 m
(Figure 4A). The six-month PFS was 90.9% (CI95%: +6.7, −22.6). We recognized that our patient group
was highly biased with children still being able to travel, and with parents putting maximal effort
and resources for treatment. A similar profile, however, was present in the 13 children from Group
3 who came for immunotherapy at the time of progressive disease. In these children, we calculated
PFS as the time between diagnosis and the date of a second event, hence first-line treatment without
immunotherapy. For these 13 children, the median PFS was 6.5 m, and the 6-month PFS was 53.8%
(CI95%: +22.1, −29.0), which was significantly (Log-rank test: p = 0.013) less than that of the patients
who received immunotherapy as part of their first-line treatment.
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Figure 4. Progression-free survival (PFS) (A) and overall survival (OS) (B) are shown for patients
from Groups 1 and 2 (black line: patients receiving immunotherapy as the first line of treatment either
before (Group 1) or after (Group 2) radiotherapy) and from Group 3 (red line: patients receiving
immunotherapy at the time of progressive disease, following the first line of treatment). Log-rank test
for PFS showed a p value of 0.014. Log-rank test for OS showed a p value of 0.057.

It is generally accepted that OS is the ultimate outcome to be considered in patients with DIPG.
A similar approach was therefore performed to assess the OS of patients from each group. Data from
all children were available, and all had an event. The median OS of the Groups 1 and 2 patients
combined was 14.4 m, with a 1-year OS of 64.3% (CI95%: +14.6, −20.5), and a 2-year OS of 10.7%
(CI95%: +14.3, −8.0) (Figure 4B). The longest OS of patients in Groups 1 and 2 was 38 m (Figure 4B).
There was no significant difference between Group 1 (median OS: 16.9 m; 2-year OS: 16.6%, CI95%:
+35, −15.9) and Group 2 (median OS: 14.4 m; 2-year OS: 9%, CI95%: +16, −7.5). The OS for the patients
in Group 3, calculated from the time of initial diagnosis, was 9.1 m, with the longest OS of 22.9 m.
There was a trend toward a longer OS when patients were treated with immunotherapy as part of
first-line treatment (p = 0.057).

Two patients from Group 3 with progressive disease were treated prior to 2015. One patient
from Group 1 began treatment in September 2015. One patient from Group 2 began treatment in
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February 2018. All other patients were treated between 2016–2017. Thus, the general policy for rescue
treatments was quite homogeneous. A total of 8/28 patients from Groups 1 and 2 received re-irradiation
upon progression. One of these eight patients received CED therapy in London, and subsequently
received intra-arterial chemotherapy in Monterrey (idoimexico.com). One other patient proceeded
with antineoplaston treatment followed by intra-arterial chemotherapy in Monterrey. We are not aware
whether chemotherapy rescue protocols were initiated. Most patients went to palliative treatments.

3.4. Laboratory Data Monitoring

Data on the evolution of the above described values over time were available for 14 patients
with longer follow up (one patient from Group 1, 11 patients from Group 2, and two patients from
Group 3). Data on the PanTum Detect test scores were available for two further patients from Group
2 (23794 and 23887). Ten patients from Groups 1 and 2 had an OS that was longer than the median
OS, while four patients had an OS that was shorter than the median OS. Data on the shift in Th1/Th2
balance are shown in Figure 5A. Although mostly within the normal reference range, 5/9 patients
with an OS longer than the median shifted toward Th1 upon immunotherapy, and 4/9 toward Th2.
The three patients with a shorter OS all shifted toward Th2 upon immunotherapy. One patient (22837)
first shifted to Th1, but then clearly to Th2. The median OS of the patients that shifted to Th1 was
23.5 months, whereas the median OS of the patients that shifted to Th2 was 17.7 m (not significant).
The two patients from Group 3 shifted toward Th1 immediately following their two vaccination cycles.
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Figure 5. Evolution of immune variables in blood was followed in 14 patients. Patients treated with
immunotherapy as part of their primary treatment with an OS longer than the median OS are shown
in green, and patients with an OS shorter than the median OS are shown in red. Marked in blue are
two patients treated with immunotherapy at the time of progressive disease following the first line of
treatment. (A) Percentage IL-4 and IFN-g producing CD4+ T cells measured at different time points.
The arrow indicates the evolution. (B) Longitudinal PDL1 mRNA expression in CTCs over the course of
12 months. The reference cut-off was 2 (dashed line). (C) The evolution of the sum of Apo10 and TKTL1
over 12 months. The maximum cut-off was 249 (dashed line). (D,E) Individual data of Apo10 + TKTL1
scores in patients 23794 and 23887. Each treatment block is indicated. During each immunotherapeutic
intervention, Apo10 + TKTL1 scores were measured before the start of, and at each consecutive day
during treatment.
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Available mRNA values for PDL1 in CTCs (Figure 5B) did not change significantly over time
as compared to the immunodiagnostic test. Values for the sum of Apo10 and TKTL1 scores were
also followed over months in this subset of patients (Figure 5C). The values reflect the content of
tumor-derived Apo10 and TKTL1 within CD14+CD16+ monocytes in peripheral blood. The levels of
these values are influenced by the volume of tumor cell damage as well as tumor cell death in response
to treatment. The two patients treated at the time of relapse had a reduction in Apo10 and TKTL1
scores over time. Additionally, two patients from Groups 1 and 2 with shorter than median OS had
decreasing values, while patients from Groups 1 and 2 who showed longer than median OS had mostly
stable or increasing values, reflecting persistent uptake of Apo10 and TKTL1 from dying tumor cells.
The more detailed curves of patients 23794 and 23387 showed an initial increase followed by a stable
and decreasing curve, respectively (Figure 5C). Of note, these two children were treated according to
the German standard of care with radiochemotherapy and up to 12 maintenance TMZ cycles, to which
ICD treatments were added, similar to the schedule published previously for adults with GBM [27].
At the immune diagnostic blood sampling, both patients had a low content of Apo10 and TKTL1 in
the CD14+CD16+ monocytes, though both were treated only with radiochemotherapy. Both patients
showed an increase in their PanTum Detect test scores and a subsequent decrease, potentially reflecting
the effect of transient radiochemotherapy and maintenance chemotherapy plus ICD therapy. Patient
23794 received seven TMZ cycles with ICD treatment, experienced disease progression, and was then
re-irradiated and received two DC vaccination cycles and further maintenance ICD treatments. Patient
23887 received five TMZ maintenance cycles with ICD treatment, experienced disease progression,
and finished immunotherapy, but then received re-irradiation and anti-GD2 antibody.

Focusing on the evolution of the PanTum Detect test results as a marker of response to ICD
treatment [36], we began daily PanTum Detect test measurements during treatment. Data from two
patients (23794 and 23387) were available. Figure 5D,E show the daily evolution of the available
PanTum Detect test results during immunotherapy at different treatment episodes. The retrospectively
sampled dataset was incomplete, however, one can appreciate the marked increase in the PanTum
Detect test results in Patient 23887 upon the first 3-day ICD treatment (Figure 5E). The ICD treatment
did not induce a further increase in the PanTum Detect test scores on a day-by-day basis when the
starting value of the treatment block was increased, but the increase in the PanTum Detect test scores
became clear again when the starting value of the treatment block was lowered. In Patient 23794, at the
time of DC vaccinations and the 5-day ICD treatment, an apparent day-by-day increase was again
observed upon injection with NDV and treatment with mEHT (Figure 5D). Together, the data suggest
that the values of the PanTum Detect test scores evolve over time, and that this evolution is likely to be
influenced by both the response to the standard antitumor treatment (transient increase and decrease
over months) and the response to ICD treatment (rapid increase day-by-day).

4. Discussion

In this study, we summarized the data obtained from a retrospective analysis of a cohort of
children diagnosed with DIPG who received multimodal immunotherapy as a primary treatment,
or at the time of progressive disease, at the IOZK mainly between 2016–2017.These children were
treated using an individualized approach. As such, the data should be taken with great caution, and
no firm conclusions can be drawn. The authors, however, do believe that the reporting of such data
is of high value to the field of DIPG research, and also holds value for the community of patients
and their families. It is critical to provide comprehensive data gathered from retrospective analyses,
in order to aid in (1) the counseling and guidance of future patients on the basis of the analyzed data,
and (2) the development of new innovative clinical trials.

Immunotherapy and molecular biology-based treatments are emerging in the field of DIPG.
H3K27M is recognized as a tumor-specific antigen [37,38], and vaccination strategies using the
long-peptide are under consideration. Immune responses have been generated using autologous
DCs loaded with lysate from DIPG cell lines [39]. Moreover, DC vaccination technology has
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been shown to be feasible and safe. The tumor microenvironment remains a major obstacle in
immunotherapy approaches [40], and oncolytic virus therapy can play a major role in modulating
the tumor microenvironment [41,42]. NDV was shown in vitro to reduce the viability of DIPG
cell lines (Carolien Koks, unpublished data). Infiltration of tumor-reacting T cells within a DIPG
microenvironment was demonstrated in animal models upon treatment with the Delta-24-RGD
oncolytic virus [43,44]. A concern in the field of oncolytic virus therapy is the antiviral immunity of
the patient. However, anti-viral immunity in an animal model using NDV as the oncolytic virus has
been shown to potentiate its immunotherapeutic efficacy [45]. mEHT is a method to treat cancer by
inducing heat stress, which selectively targets tumor cells due to their altered metabolic dependencies
relative to healthy cells, resulting in different conductivity of electromagnetic waves [46]. mEHT is
known to induce immunogenic cell death [47–50], and has been previously utilized in the treatment
of brain tumors [51]. Overall, there are sufficient data as well as experience at the IOZK to support
multimodal immunotherapy for these children as an individualized treatment approach.

While the patient group is small, the collation of retrospective data from 36 patients with DIPG
over a period of two years in one institution remains remarkable. The drive for this retrospective
study was mainly the interest both among clinicians and parents of children with DIPG, as evidenced
by social media. The authors realize that this is a highly biased patient group at multiple levels
including the medical condition and the attitude of the parents. However, when considering the age
distribution and LPS distribution of this cohort, the patient group reflects the typical DIPG patient
profile. The LPS was very low in some patients from Group 3, presenting with progressive disease.
Whereas all patients had typical clinical symptoms and MRI findings to substantiate the diagnosis of
DIPG, the diagnosis was further supported in 16/41 patients (39%) by molecular analysis via tissue
or plasma liquid biopsy, facilitating the identification of diagnostic histone H3K27M mutations in a
subset of patients. Nonetheless, MR imaging was the key factor in DIPG diagnosis. The available data
did not allow an appropriate matching analysis between tissue biopsy and liquid biopsy.

All patients were counseled and treated for DIPG by the oncologic center. Thirteen children from
Group 2 were treated with radiotherapy as the first line treatment alone, while in total, three children
from Group 1 (Polish protocol, though meant to be followed by radiotherapy) and nine children from
Group 2 were treated with radiotherapy and chemotherapy. This distribution also reflects the current
reality for DIPG treatment practices [26]: 52% of our patients with first diagnosis were treated by the
oncologic center with radiotherapy alone.

A surprisingly high proportion of patients exhibited immune variables below the reference values
at the time of presentation for multimodal immunotherapy. Both the disease itself and the treatments
given have a clear effect on immune potency. Even the three children who were not treated with steroids
or other prior treatments (radio- or chemotherapy) had levels below the reference limit for at least one
functional immune variable (cytokine production, NK killing function). This is a notable finding, as the
DIPG tumor microenvironment has been recently characterized as neither highly immunosuppressive
nor inflammatory [40]. Furthermore, approximately half of the patients with newly diagnosed DIPG
were treated with only radiotherapy prior to blood sampling. However, radiotherapy given only
locally can still have a systemic effect on the immune system [52]. The addition of Temozolomide
during and after radiotherapy further affects immune function. Nevertheless, a strategy to combine
maintenance Temozolomide with immunogenic cell death treatment and subsequent DC vaccination
after maintenance chemotherapy has already been published for adults with GBM [27]. Together,
the data point to a weakened immune status of the patient at the time of DIPG diagnosis, which is
worsened by any further medical intervention.

Another remarkable finding is the presence of CTCs in the blood at the time of the
immunodiagnostic blood sampling prior to immunotherapy. This test, provided by LADR Biofocus,
detects CTCs based on filtration techniques for the enrichment of cancer cells from the blood [53–55].
Molecular detection is subsequently performed by quantitative real-time PCR to measure the mRNA
expression of Telomerase, ERBB2, C-kit, and EGFR in comparison to GADPH mRNA expression.
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These general markers for brain tumors are used for tumor cell detection, as specific H3K27M
mRNA markers are not currently available. CTCs were detected in 73% of patients, a detection rate
higher than the detection rate for brain tumors (60%) mentioned by the company. Although there
is emerging knowledge on CTCs in patients with GBM [56,57], no specific literature is available for
DIPG. Nevertheless, this finding might lead to more systematic detection in these patients, as the
presence of CTCs in peripheral blood may reflect changing tumor biology and treatment resistance.
Importantly, 42% of CTC-positive samples showed elevated mRNA expression for PDL1 relative to the
housekeeping gene mRNA. PDL1 positivity in these CTCs might contribute to immune resistance,
similar to the mechanism published for PDL1-expressing GBM-derived extracellular vesicles [58].
Correlations between the expression of PDL1 mRNA in CTCs and data on the tumor–host interaction
derived from pathology investigations on biopsies is not currently available, but warrants further study.

All patients were treated with an individualized treatment approach in compassionate use
(“individueller Heilversuch”) with the goal of prolonging individual survival and maintaining quality
of life. The OS is the most important read-out of any clinical approach for DIPG patients, but remains
very poor. All previous attempts to date to improve OS have failed [10–12]. The survival prediction
model published in 2015 can be considered as actual [13]. In this model, the age, duration of symptoms,
and use of chemotherapy are linked to improved OS, whereas ring contrast enhancement on MRI at
diagnosis is an unfavorable predictor of OS [13]. In the presented retrospective series, we did not
have all the data available to calculate the individual DIPG risk score for each patient. However, only
one child from Group 2 was younger than three years of age at diagnosis, and 14/22 (64%) patients
did not receive chemotherapy; these two important factors influenced the DIPG risk score for most
patients with “+7” in the absence of “−4”. Accordingly, one can estimate that most patients belong to
the intermediate and high risk groups. Although the patient cohort in this study remains biased in
many respects, and no definite conclusions can be drawn from this retrospective analysis, the observed
14.4 month median OS for Group 2 exceeded the published median OS of 9.7 months for intermediate
risk patients and seven months for high risk patients, respectively, in the published survival prediction
model [13]. All patients from Group 3 were older than three years, and only four patients (31%) did not
receive chemotherapy. The median OS of 9.1 months from diagnosis in this group reflects the published
data [13]. These patients represent an equally biased patient group as those from Groups 1 and 2.
Therefore, one can conclude that the introduction of immunotherapy as a first line treatment may
provide potential benefit, compared to the introduction of immunotherapy at the time of progressive
disease. This finding is further supported by the data showing that the estimated PFS shifted by
about two months upon introduction of immunotherapy as first line treatment. Immunotherapy at an
early stage of disease is generally accepted to be more effective than at a later stage of disease [59].
As most patients did not undergo a tumor biopsy, and hence no tumor DNA was available to determine
mutation status or other molecular biology characteristics, we could not further compare the OS data
in this study with data published on patient groups defined by the molecular biology of the tumor [60].

We were able to measure cytokine production during treatment in several patients. For all
monitoring data, patients from Groups 1 and 2 were divided into (a) those living longer or shorter than
the median OS, and (b) patients treated at relapse. The authors realize that this is a rough descriptive
analysis. A total of 67% of patients with longer OS had an immune response shift toward Th1, while all
patients with shorter OS shifted toward Th2. A Th1 shift linked to a better OS upon immunotherapy
has also been observed in patients with GBM treated with immunotherapy [27]. In GBM, the profile
of the myeloid cells and microglia within the tumor microenvironment contributes to the Th1/Th2
balance, and hence the Th2 shift upon treatment might reflect a more immunosuppressive tumor
microenvironment [61]. Similarly, the Th1/Th2 balance has been linked to PDL1/PD2 axis activity [62].
However, the tumor–host mechanisms observed in GBM cannot be transferred to the DIPG tumor
microenvironment [40]. Furthermore, the peripheral blood immune status does not necessarily reflect
the intra-tumor status. We were not able to detect links between oncologic, immune, or treatment
characteristics predicting the shift direction.
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During the years in which the 41 children in this cohort were treated, we developed the PanTum
Detect tests using the EDIM platform as a potential marker of response to treatment [36]. These tests
were originally developed for cancer screening purposes [30–33], but showed value in the temporal
monitoring of patient responses [63,64]. Data in GBM patients suggested that high PanTum Detect
test scores could reflect responsive patients with better survival [27]. A similar observation was
present in this cohort of patients. The kinetics of these markers showed a transient response to the
different treatment modalities and allowed a day-by-day assessment of the effect of ICD treatment.
Both NDV [41,42] and mEHT [47–50] have been shown to induce ICD. The in vivo assessment of ICD
is difficult, as biomarkers in blood are strongly diluted and are not fully representative of the biological
processes occurring within the tumor. Most in vivo assessment of ICD relies on the abscopal effect that
can be studied in pre-clinical in vivo models. Intracellular staining of tumor-related markers such as
Apo10 and TKTL1 can be considered as a methodology using the circulating CD14+CD16+ myeloid
cells in the blood, which may provide information on the tumor. Any kind of tumor cell damage
causing leakage of Apo10 and TKTL1 could be picked up by myeloid cells. Thus, the interpretation of
the PanTum Detect test scores is complex and influenced by many factors. However, the repetitive
day-by-day increase upon ICD treatment might suggest a causal relationship between ICD treatment
and increased biomarker levels.

5. Conclusions

We report our experiences with multimodal immunotherapy in a large cohort of children with
DIPG treated within a short time frame. This retrospective analysis has uncovered several interesting
observations that may allow further optimization of multimodal immunotherapy for DIPG as part
of primary treatment, focusing on Th1/Th2 shifting, the mode of NDV application, and the intensity
of mEHT. The evolution of PanTum Detect test scores may emerge as a tool for assessing treatment
response on a daily basis. This retrospective analysis consisted of a biased group of patients, and all
associated limitations should be considered. Further preclinical mechanistic data should be generated
to support the treatment concept. Nevertheless, the observed median OS of 14.4 months, 1-year
survival of 65%, and 2-year survival of 10% for children belonging to intermediate or high-risk profiles
remain remarkable. The data suggest that multimodal immunotherapy may be useful when integrated
with the first line of treatment. A phase I/II clinical trial incorporating multimodal immunotherapy
after the standard radiotherapy, and measuring the variables described here, is the most appropriate
design at the current stage. This report aims to provide information to the scientific community for
appropriate counseling of patients, and ultimately for consideration of the inclusion of multimodal
immunotherapy in innovative clinical trials.
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